
Friday, April 25

Nonlinear Regression With Random Effects
Example: The model we specified for the Sitka data can be written as

E(Yij) = β0 + β1oij + β2wij + β3oijwij + δi + γiwij ,

where oij is an indicator for if the observation is from the ozone treatment condition and wij is weeks. We
can also write this model as

E(Yij) = β0 + β1oij + δi︸ ︷︷ ︸
β0ij

+ (β2 + β3oij + γi)︸ ︷︷ ︸
β1ij

wi,

or
E(Yij) = β0ij + β1ijwij ,

to show that the model assumes a linear relationship between expected size and weeks, but where the
“intercept” β0ij depends on the treatment condition and tree, and the “slope” β1ij depends on the treatment
condition and tree because

β0ij = β0 + β1oij + δi

β1ij = β2 + β3oij + γi.

Models with random effects written in this way are sometimes called “random coefficient” models. The
coefficients β0ij and β1ij are random (due to δi and γi) but may also depend on one or more explanatory
variables (such as treatment condition via oij).

The nlme function from the nlme package can estimate a linear or nonlinear regression model with random
coefficients (assuming a normally-distributed response variable and random parameters). We estimated a
model for the Sitka data as follows.
library(MASS)
library(lme4)
m <- lmer(exp(size) ~ treat * I(Time/7) + (1 + I(Time/7) | tree),

data = Sitka, REML = FALSE)
summary(m)$coefficients

Estimate Std. Error t value
(Intercept) -305.12 31.25 -9.76
treatozone 110.68 37.80 2.93
I(Time/7) 17.56 1.68 10.42
treatozone:I(Time/7) -5.52 2.04 -2.71

I am using REML = FALSE to use maximum likelihood rather than restricted maximum likelihood (REML)
for estimation so that we can compare the results with nlme, which only uses maximum likelihood. We are
going to assume we can ignore the warning.
library(nlme)
m <- nlme(exp(size) ~ b0 + b1 * I(Time/7),

fixed = b0 + b1 ~ treat,
random = b0 + b1 ~ 1 | tree,
start = c(0,0,0,0), data = Sitka)

summary(m)
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Nonlinear mixed-effects model fit by maximum likelihood
Model: exp(size) ~ b0 + b1 * I(Time/7)
Data: Sitka
AIC BIC logLik

3947 3978 -1965

Random effects:
Formula: list(b0 ~ 1, b1 ~ 1)
Level: tree
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
b0.(Intercept) 148.70 b0.(I)
b1.(Intercept) 8.27 -0.987
Residual 19.57

Fixed effects: b0 + b1 ~ treat
Value Std.Error DF t-value p-value

b0.(Intercept) -305.1 31.4 313 -9.71 0.0000
b0.treatozone 110.7 38.0 313 2.91 0.0038
b1.(Intercept) 17.6 1.7 313 10.37 0.0000
b1.treatozone -5.5 2.0 313 -2.69 0.0075
Correlation:

b0.(I) b0.trt b1.(I)
b0.treatozone -0.827
b1.(Intercept) -0.980 0.810
b1.treatozone 0.810 -0.980 -0.827

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.965 -0.389 -0.055 0.383 4.822

Number of Observations: 395
Number of Groups: 79

The nlme function is like nls in that it needs starting values for the (fixed) parameters, but since the model
is linear we do not need particularly good starting values.

Example: Now consider a nonlinear regression model with random effects for the Loblolly data that come
with R.
head(Loblolly)

Grouped Data: height ~ age | Seed
height age Seed

1 4.51 3 301
15 10.89 5 301
29 28.72 10 301
43 41.74 15 301
57 52.70 20 301
71 60.92 25 301
p <- ggplot(Loblolly, aes(x = age, y = height)) +

geom_point(size = 0.5) + facet_wrap(~ Seed, ncol = 7) +
ylab("Height (ft)") + xlab("Age (yr)") + theme_minimal()

plot(p)
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Suppose we want to estimate the nonlinear growth model

E(H) = θ1 + (θ2 − θ1)e−a log(2)/θ3 ,

where H and a are height and age, respectively, θ1 is the asymptote as a → ∞, and θ2 is an “intercept”
parameter, and θ3 is the age at which the tree is half way between E(H) = θ2 and E(H) = θ1. To allow for
differences between trees with respect to θ1 and θ3 (but not θ2) we could write the model as

E(Hij) = θ1i + (θ2 − θ1i)e−aij log(2)/θ3i ,

where Hij and aij are now the height and age of the j-th observation of the i-th tree.
m <- nlme(height ~ t1 + (t2 - t1) * exp(-age * log(2)/t3),

fixed = t1 + t2 + t3 ~ 1,
random = t1 + t3 ~ 1 | Seed,
start = c(t1 = 100, t2 = 0, t3 = 15),
data = Loblolly)

summary(m)

Nonlinear mixed-effects model fit by maximum likelihood
Model: height ~ t1 + (t2 - t1) * exp(-age * log(2)/t3)
Data: Loblolly
AIC BIC logLik
239 256 -113

Random effects:
Formula: list(t1 ~ 1, t3 ~ 1)
Level: Seed
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Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr

t1 5.405 t1
t3 1.233 0.769
Residual 0.646

Fixed effects: t1 + t2 + t3 ~ 1
Value Std.Error DF t-value p-value

t1 101.0 2.471 68 40.9 0
t2 -8.7 0.285 68 -30.5 0
t3 17.5 0.629 68 27.8 0
Correlation:

t1 t2
t2 0.615
t3 0.918 0.698

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-1.8805 -0.5942 -0.0401 0.7078 1.4799

Number of Observations: 84
Number of Groups: 14

We can plot the estimated growth curves (both per tree and average) as follows.
d <- expand.grid(age = seq(0, 50, length = 100), Seed = unique(Loblolly$Seed))

d$yhat.ind <- predict(m, newdata = d, level = 1) # individual tree
d$yhat.avg <- predict(m, newdata = d, level = 0) # average tree

p <- ggplot(Loblolly, aes(x = age, y = height)) +
geom_line(aes(y = yhat.ind), data = d, linetype = 3) +
geom_line(aes(y = yhat.avg), data = d) +
geom_point(size = 0.5) + facet_wrap(~ Seed, ncol = 7) +
ylab("Height (ft)") + xlab("Age (yr)") + theme_minimal()

plot(p)
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Example: Here are some data from an experiment using a randomized block design on the effect of weed
density on yield loss of sunflowers.
yieldloss <- read.csv("https://raw.githubusercontent.com/OnofriAndreaPG/agroBioData/master/YieldLossB.csv", header = T)

p <- ggplot(yieldloss, aes(x = density, y = yieldLoss)) + theme_minimal() +
labs(x = "Density (weeds per square meter)", y = "Yield Loss") +
geom_line(aes(group = block), alpha = 0.25) + geom_point(alpha = 0.5)

plot(p)
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The model suggested for these data has the same form as the Michaelis-Menten model, but with random
effects to account for the effect of block.
m <- nlme(yieldLoss ~ alpha * density / (beta + density),

fixed = list(alpha ~ 1, beta ~ 1),
random = alpha + beta ~ 1 | block,
start = c(alpha = 60, beta = 30), data = yieldloss)

summary(m)$tTable

Value Std.Error DF t-value p-value
alpha 67.6 1.83 104 37.0 9.87e-62
beta 54.5 2.52 104 21.6 3.34e-40
d <- expand.grid(density = seq(0, 100, length = 100), block = 1:15)
d$yhat <- predict(m, newdata = d)

p <- ggplot(yieldloss, aes(x = density, y = yieldLoss)) + theme_minimal() +
labs(x = "Density (weeds per square meter)", y = "Yield Loss") +
geom_point() + geom_line(aes(y = yhat), data = d) +
facet_wrap(~ block, ncol = 5)

plot(p)
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p <- ggplot(yieldloss, aes(x = density, y = yieldLoss)) + theme_minimal() +
labs(x = "Density (weeds per square meter)", y = "Yield Loss") +
geom_point(alpha = 0.5) + geom_line(aes(y = yhat, group = block), alpha = 0.25, data = d)

plot(p)
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Example: The data frame Soybean from the nlme package has data from an experiment looking at soybean
growth.
head(Soybean)

Grouped Data: weight ~ Time | Plot
Plot Variety Year Time weight

1 1988F1 F 1988 14 0.106
2 1988F1 F 1988 21 0.261
3 1988F1 F 1988 28 0.666
4 1988F1 F 1988 35 2.110
5 1988F1 F 1988 42 3.560
6 1988F1 F 1988 49 6.230
p <- ggplot(Soybean, aes(x = Time, y = weight)) +

geom_point() + facet_wrap(~ Plot, ncol = 8) +
labs(x = "Time (days after planting)",

y = "Weight (average leaf weight per plant in grams)") +
theme_minimal()

plot(p)
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p <- ggplot(Soybean, aes(x = Time, y = weight)) +
geom_point(size = 1) + facet_wrap(~ Variety) +
geom_line(aes(group = Plot), linewidth = 0.1) +
labs(x = "Time (days after planting)",

y = "Weight (average leaf weight per plant in grams)") +
theme_minimal()

plot(p)
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Consider a logistic growth model which can be written as

E(W ) = θ1

1 + e−(t−θ2)/θ3
,

where θ1 is the asymptote as t → ∞, θ2 is the time at which the expected weight is θ1/2, and θ3 is inversely
related to the steepness of the curve at θ2. We could assume that each parameter varies by plot, and is also
affected by variety as follows.
m <- nlme(weight ~ theta1 / (1 + exp(-(Time - theta2) / theta3)), data = Soybean,
fixed = theta1 + theta2 + theta3 ~ Variety,
random = theta1 + theta2 + theta3 ~ 1 | Plot,
start = c(20, 0, 60, 0, 10, 0),
control = nlmeControl(msMaxIter = 1000))

summary(m)$tTable

Value Std.Error DF t-value p-value
theta1.(Intercept) 16.947 1.031 359 16.441 1.12e-45
theta1.VarietyP 4.566 1.463 359 3.121 1.95e-03
theta2.(Intercept) 54.876 1.056 359 51.963 4.22e-169
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theta2.VarietyP 0.183 1.450 359 0.126 9.00e-01
theta3.(Intercept) 8.228 0.475 359 17.330 2.53e-49
theta3.VarietyP 0.374 0.635 359 0.590 5.56e-01

In more complex models getting the inferences you want from a nlme object can be a bit tricky. Functions
like contrast and emmeans will not work with a nlme object. But you can use the lincon function, although
you need to tell it how to extract the parameter estimates from nlme (it needs to use the fixef function).
Here we can get results like those returned by summary.
trtools::lincon(m, fest = fixef)

estimate se lower upper tvalue df pvalue
theta1.(Intercept) 16.947 1.023 14.94 18.95 16.562 Inf 1.31e-61
theta1.VarietyP 4.566 1.452 1.72 7.41 3.144 Inf 1.67e-03
theta2.(Intercept) 54.876 1.048 52.82 56.93 52.345 Inf 0.00e+00
theta2.VarietyP 0.183 1.440 -2.64 3.00 0.127 Inf 8.99e-01
theta3.(Intercept) 8.228 0.471 7.30 9.15 17.458 Inf 2.99e-68
theta3.VarietyP 0.374 0.630 -0.86 1.61 0.594 Inf 5.53e-01

The estimate of mean θ1 parameter for the F variety is given by theta1.(Intercept). But the estimate
of the mean θ1 parameter for the P variety is the sum of the theta1.(Intercept) and theta1.VarietyP
parameters. This can be obtained as follows.
trtools::lincon(m, a = c(1,1,0,0,0,0), fest = fixef)

estimate se lower upper tvalue df pvalue
(1,1,0,0,0,0),0 21.5 1.03 19.5 23.5 20.9 Inf 9.5e-97

Again we can plot this model as we did with the Loblolly data/model, although setting up the data frame
is a little more complicated because plots and variety are not crossed.
library(dplyr)
library(tidyr)
d <- Soybean |> dplyr::select(Plot, Variety) |> unique() |>

group_by(Plot, Variety) |> tidyr::expand(Time = seq(14, 84, length = 100))
d$yhat.ind <- predict(m, newdata = d, level = 1)
d$yhat.avg <- predict(m, newdata = d, level = 0)

p <- ggplot(Soybean, aes(x = Time, y = weight)) +
geom_line(aes(y = yhat.ind, group = Plot), data = d, alpha = 0.125) +
geom_line(aes(y = yhat.avg), data = d) +
geom_point(size = 1, alpha = 0.25) + facet_wrap(~ Variety) +
labs(x = "Time (days after planting)",

y = "Weight (average leaf weight per plant in grams)") + theme_minimal()
plot(p)
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Crossed Random Effects
Crossed random effects might be specified when two (or more) factors modeled as having random effects are
crossed (i.e., having a “factorial design” structure).

Example: Six samples of penicillin were tested using 24 plates. The response variable was the diameter of
the zone of inhibition of the growth of a bacteria.
p <- ggplot(Penicillin, aes(x = plate, y = diameter)) +

geom_point(size = 1) + facet_wrap(~ sample, ncol = 6) +
coord_flip() + theme_minimal() +
theme(axis.text.x = element_text(size = 5)) +
labs(y = "Diameter (mm)", x = "Plate")

plot(p)
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Let Yij denote the diameter of inhibition for the i-th sample (i = 1, 2, . . . , 6) and the j-th plate (j = 1, 2, . . . , 26).
A model might be

E(Yij) = β0 + δi + ζj or Yij = β0 + δi + ζj + eij .

where δi and ζj are sample-specific and plate-specific effects, respectively. Here we will model both as random
effects, each with an independent normal distribution. Note that we don’t have any fixed effects.
m <- lmer(diameter ~ (1 | plate) + (1 | sample), data = Penicillin)
summary(m)

Linear mixed model fit by REML ['lmerMod']
Formula: diameter ~ (1 | plate) + (1 | sample)

Data: Penicillin

REML criterion at convergence: 331

Scaled residuals:
Min 1Q Median 3Q Max

-2.0792 -0.6714 0.0629 0.5838 2.9796

Random effects:
Groups Name Variance Std.Dev.
plate (Intercept) 0.717 0.847
sample (Intercept) 3.731 1.932
Residual 0.302 0.550

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:
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Estimate Std. Error t value
(Intercept) 22.972 0.809 28.4

Example: Consider the following data from a study that examined mating success with multiple combinations
of male and female salamanders.
library(hglm.data)
data(salamander)
head(salamander, 12)

Season Experiment TypeM TypeF Cross Male Female Mate
1 Summer 1 R R RR 1 1 1
2 Summer 1 W R RW 14 1 1
3 Summer 1 R R RR 5 1 1
4 Summer 1 W R RW 11 1 0
5 Summer 1 R R RR 4 1 1
6 Summer 1 W R RW 15 1 1
7 Summer 1 R R RR 5 2 1
8 Summer 1 W R RW 15 2 1
9 Summer 1 R R RR 3 2 1
10 Summer 1 W R RW 13 2 1
11 Summer 1 R R RR 1 2 1
12 Summer 1 W R RW 12 2 1

The question here is how the combination female and male salamanders in terms of population (W =
“White Side”, R = “Rough Butt”) affects mating success, while accounting for individual differences in the
salamanders themselves.
salamander$Cross <- relevel(salamander$Cross, ref = "WR")
m <- glmer(Mate ~ Cross + (1 | Male) + (1 | Female),

family = binomial, data = salamander)
summary(m)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )

Formula: Mate ~ Cross + (1 | Male) + (1 | Female)
Data: salamander

AIC BIC logLik -2*log(L) df.resid
431 454 -209 419 354

Scaled residuals:
Min 1Q Median 3Q Max

-2.051 -0.616 0.271 0.597 2.551

Random effects:
Groups Name Variance Std.Dev.
Male (Intercept) 1.04 1.02
Female (Intercept) 1.17 1.08

Number of obs: 360, groups: Male, 60; Female, 60

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.896 0.446 -4.25 2.1e-05 ***
CrossRR 2.904 0.561 5.18 2.2e-07 ***
CrossRW 2.202 0.588 3.75 0.00018 ***
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CrossWW 2.886 0.549 5.26 1.4e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) CrssRR CrssRW

CrossRR -0.716
CrossRW -0.771 0.678
CrossWW -0.709 0.521 0.661

Nested Random Effects
Nested factors occur when they form a hierarchical structure. For example, in the Sitka data the levels of
tree are nested within levels of treat (i.e., ozone or control), and in the Soybean data the levels of Plot are
nested within levels of Variety. Nested random effects when the levels of one factor, modeled as a random
effect, are nested within the levels of another factor that is also modeled as a random effect.

Example: The Pastes data frame from the lme4 package is from a study of the strength of chemical pastes.
Paste was delivered in a cask, and there were three casks per batch, and 10 batches. Two tests were run per
cask.
head(Pastes, 12)

strength batch cask sample
1 62.8 A a A:a
2 62.6 A a A:a
3 60.1 A b A:b
4 62.3 A b A:b
5 62.7 A c A:c
6 63.1 A c A:c
7 60.0 B a B:a
8 61.4 B a B:a
9 57.5 B b B:b
10 56.9 B b B:b
11 61.1 B c B:c
12 58.9 B c B:c

Note that levels of cask are not the same between batches — i.e., cask a in batch A is not the same as cask a
in batch B, for example. The sample variable was created to identify a particular cask. We could model
these data as

E(Yijk) = β0 + δi + ζij ,

where Yijk is k-th (k = 1, 2) test a paste from the j-th (j = 1, 2, 3) cask from the i-th batch (i = 1, 2, . . . , 10).
So here δi is the effect of the i-th batch, and ζij is the effect of the j-th cask from the i-th batch.
m <- lmer(strength ~ (1|batch) + (1|cask:batch), data = Pastes)
summary(m)

Linear mixed model fit by REML ['lmerMod']
Formula: strength ~ (1 | batch) + (1 | cask:batch)

Data: Pastes

REML criterion at convergence: 247

Scaled residuals:
Min 1Q Median 3Q Max

-1.4798 -0.5156 0.0095 0.4720 1.3897
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Random effects:
Groups Name Variance Std.Dev.
cask:batch (Intercept) 8.434 2.904
batch (Intercept) 1.657 1.287
Residual 0.678 0.823

Number of obs: 60, groups: cask:batch, 30; batch, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 60.053 0.677 88.7

Note that you could use sample in place of cask:batch.

Example: Consider the following data from an experiment on the treatment of arthritis.
myhips <- faraway::hips |> pivot_longer(cols = c(fbef,faft,rbef,raft),

names_to = "obs", values_to = "angle") |>
mutate(time = rep(c("before","after"), n()/2)) |>
mutate(variable = rep(c("flexion","flexion","rotation","rotation"), n()/4)) |>
mutate(time = factor(time, levels = c("before","after")))

head(myhips,10)

# A tibble: 10 x 7
grp side person obs angle time variable
<fct> <fct> <fct> <chr> <dbl> <fct> <chr>

1 treat right 1 fbef 125 before flexion
2 treat right 1 faft 126 after flexion
3 treat right 1 rbef 25 before rotation
4 treat right 1 raft 36 after rotation
5 treat left 1 fbef 120 before flexion
6 treat left 1 faft 127 after flexion
7 treat left 1 rbef 35 before rotation
8 treat left 1 raft 37 after rotation
9 treat right 2 fbef 135 before flexion

10 treat right 2 faft 135 after flexion
p <- ggplot(subset(myhips, variable == "flexion"), aes(x = time, y = angle, fill = side)) +

theme_minimal() + geom_dotplot(binaxis = "y", stackdir = "center", binwidth = 1,
position = position_dodge(width = 0.5)) + facet_wrap(~ grp) +

labs(x = "Observation Time", y = "Hip Rotation Angle", fill = "Hip")
plot(p)
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Here for each of two response variables (flexion and rotation) we have two observations (before and after) for
each hip (side) for each person. Here we specify a random effect for each person and a random effect for each
hip within each person. Here we will consider the rotation response variable. Note that I am assuming that
there is not, on average, an effect of left versus right side.
m <- lmer(angle ~ time * grp + (1|person) + (1|person:side),

subset = variable == "rotation", data = myhips)
summary(m)

Linear mixed model fit by REML ['lmerMod']
Formula: angle ~ time * grp + (1 | person) + (1 | person:side)

Data: myhips
Subset: variable == "rotation"

REML criterion at convergence: 1033

Scaled residuals:
Min 1Q Median 3Q Max

-2.0275 -0.5006 0.0254 0.4548 1.8289

Random effects:
Groups Name Variance Std.Dev.
person:side (Intercept) 33.1 5.76
person (Intercept) 27.6 5.25
Residual 18.0 4.24

Number of obs: 156, groups: person:side, 78; person, 39
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Fixed effects:
Estimate Std. Error t value

(Intercept) 25.000 2.105 11.88
timeafter 0.958 1.224 0.78
grptreat -0.222 2.529 -0.09
timeafter:grptreat 5.634 1.471 3.83

Correlation of Fixed Effects:
(Intr) timftr grptrt

timeafter -0.291
grptreat -0.832 0.242
tmftr:grptr 0.242 -0.832 -0.291

What is the estimated change in expected rotation from before to after treatment in each group?
trtools::contrast(m,

a = list(time = "after", grp = c("control","treat")),
b = list(time = "before", grp = c("control","treat")),
cnames = c("control","treat"))

estimate se lower upper tvalue df pvalue
control 0.958 1.224 -1.44 3.36 0.783 Inf 4.34e-01
treat 6.593 0.816 4.99 8.19 8.080 Inf 6.47e-16

The icc_specs function from the specr package can be used to produce estimates concerning the “variance
components” (i.e., the variance due to person, side, and error).
specr::icc_specs(m)

grp vcov icc percent
1 person:side 33.1 0.421 42.1
2 person 27.6 0.351 35.1
3 Residual 18.0 0.228 22.8
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