Wednesday, April 23

Random Effects Approach

The random effects approach conceptualizes the parameters associated with the levels of the many-leveled
factor as random variables. Another way to think of this is that the levels of that factor are a sample of levels
from a real or conceptual population of levels.

Note: We sometimes use the term “mixed effects” model for a model where some parameters are modeled
as random and some that are not modeled as random (i.e., fixed). Most (but not all) models with random
effects also have some fixed effects, and are thus mixed effects models.

Example: Consider again the baserun data, but a system of subscripts that distinguishes between the player
and the observation within each player so that Y;; is the j-th observation of running time for the i-th player.

library(trtools)
head (baserun)

round narrow wide

1 5.40 5.50 5.55
2 5.85 5.70 5.75
3 5.20 5.60 5.50
4 5.55 5.50 5.40
5 5.90 5.85 5.70
6 5.45 5.55 5.60

If we were to ignore the effect of player we could write a model for these data as
E(Yij) = Bo + Bixij1 + Paxijo,
where z;; and z;2 are indicator variables for two of the three routes.
In the fized effects approach we include an indicator variable for each player, so the model would become
E(Yi;) = Po + frziji + Pazijo + Baxijz + Baxija + - - + Pasijos,
where ;;3, Tij4, . . ., T;523 are the 21 indicator variables for the 22 players.

In the random effects approach we would view 3, B4, ..., P23 as random variables. To distinguish the random
from the non-random (fixed) parameters I will change the symbols for the indicator variables and the
parameters corresponding to the players and write the model as

E(Yi;) = Bo + Biwiji + Pawije + 01251 + 022ij2 + -+ - + d222ij22.

Note also that here we have 22 rather than 21 indicator variables (each player has their own parameter). A
more compact way to write this model is

E(Yij) = Bo + Bixij1i + Pazijo + 012451 + 022452 + - - - + 02224522 = Bo + P1xij1 + Paxijo + 04,

L

so that §; represents the “random effect” of the i-th player.

Another way to write this model is

Yij = Bo + Brixij1 + Bawije + 6i + €ij,



where ¢€;; is the usual random error term, which is implicitly assumed to be normally-distributed. Thus on
the right-hand side of the above expression we have two random variables on the right-hand side: §; and €;;.

To complete the model a distribution is needed to be assumed for each §;. Typically they are assumed to be
normally distributed with zero mean and some variance o3 so that we write §; ~ N(0,02). Because the d;
have a mean of zero they can be viewed as a “deviation” of the effect of the i-th player from a (conceptual)
average player.

The presence of the random §; parameters fundamentally changes the likelihood function. Specialized
inferential methods are (usually) necessary to arrive at correct inferences when random effects are specified.
As with other approaches functions to implement these methods require that the data be in “long form” so
we reshape the baserun data.

library(dplyr)

library(tidyr)

baselong <- trtools::baserun |> mutate(player = factor(letters[1:n()])) [>
pivot_longer(cols = c(round, narrow, wide), names_to = "route", values_to = "time")

head (baselong)

# A tibble: 6 x 3
player route time
<fct> <chr> <dbl>

1a round 5.4
2 a narrow 5.5
3 a wide 5.55
4 b round 5.85
5b narrow 5.7
6 b wide 5.75

The 1mer function from the lme4 package can estimate a linear mized effects regression model with normally-
distributed random effects. The model above can be estimated as follows.

library (1lme4)
m <- lmer(time ~ route + (1 | player), data = baselong)
summary (m)

Linear mixed model fit by REML ['lmerMod']

Formula: time ~ route + (1 | player)
Data: baselong

REML criterion at convergence: -51.4
Scaled residuals:

Min 1Q Median 3Q Max
-3.0968 -0.3473 0.0031 0.5001 1.6424

Random effects:

Groups  Name Variance Std.Dev.
player  (Intercept) 0.06448 0.2539
Residual 0.00745 0.0863

Number of obs: 66, groups: player, 22

Fixed effects:

Estimate Std. Error t value
(Intercept) 5.53409 0.05718 96.78
routeround 0.00909 0.02603 0.35
routewide -0.07500 0.02603 -2.88



Correlation of Fixed Effects:
(Intr) rotrnd

routeround -0.228

routewide -0.228 0.500

Profile likelihood confidence intervals for o7 (the variance of the ¢; parameters), o2 (the variance of €;;), and
Bo, B1, and B2 can be obtained using confint.

confint (m)

2.5 % 97.5 %
.sig01 0.1869 0.3475
.sigma 0.0694 0.1056
(Intercept) 5.4202 5.6479
routeround -0.0419 0.0600
routewide -0.1259 -0.0241

Using lincon will produce Wald confidence intervals for Sy, 51, and Ss.
trtools: :lincon(m)

estimate se lower upper tvalue df pvalue
(Intercept) 5.53409 0.0572 5.4220 5.6462 96.784 Inf 0.00000

routeround 0.00909 0.0260 -0.0419 0.0601 0.349 Inf 0.72687
routewide -0.07500 0.0260 -0.1260 -0.0240 -2.882 Inf 0.00396

Other inferences can be made using trtools::contrast and the emmeans package, but note that player is
never specified when using these functions. These tools provide inferences only for the “fixed effects” of the
model. We can estimate the expected running time for each route.

library (emmeans)

emmeans (m, ~route)

route emmean SE  df lower.CL upper.CL
narrow 5.53 0.0572 24.2 5.42 5.65
round 5.54 0.0572 24.2 5.43 5.66
wide 5.46 0.0572 24.2 5.34 5.58

Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95

trtools::contrast(m, a = list(route = c("narrow","round","wide")),
cnames = c("narrow","round","wide"))

estimate se lower upper tvalue df pvalue
narrow 5.563 0.0572 5.42 5.65 96.8 Inf 0
round 5.54 0.0572 5.43 5.66 96.9 Inf 0
wide 5.46 0.0572 5.35 5.57 95.5 Inf 0

Notice that emmeans uses the “Kenward-Roger” method of computing approximate degrees of freedom. The
issue of degrees of freedom is a difficult problem in models with random effects. Some statisticians suggest
just using Wald methods which specify infinite degrees of freedom as an approximation (which is the default
in my functions). This can be done using the lmer.df = "asymptotic" option.

emmeans (m, ~route, lmer.df = "asymptotic")

route emmean SE df asymp.LCL asymp.UCL
narrow 5.53 0.0572 Inf 5.42 5.65



round 5.
5.

4 0.0572 Inf 5.43 5.66
wide 6

5
46 0.0572 Inf 5.35 5.57
Degrees-of-freedom method: asymptotic
Confidence level used: 0.95

We can also compare the routes as before.

pairs(emmeans(m, ~ route, lmer.df = "asymptotic"), adjust = "none", infer = TRUE)

contrast estimate SE df asymp.LCL asymp.UCL z.ratio p.value
narrow - round -0.0091 0.026 Inf -0.0601 0.0419 -0.350 0.7270
narrow - wide 0.0750 0.026 Inf 0.0240 0.1260 2.880 0.0040
round - wide 0.0841 0.026 Inf 0.0331 0.1351 3.230 0.0010

Degrees-of-freedom method: asymptotic
Confidence level used: 0.95

trtools::contrast(m, a = list(route = c("narrow","round","wide")),

cnames = c("narrow","round","wide"))

estimate se lower upper tvalue df pvalue
narrow 5.53 0.0572 5.42 5.65 96.8 Inf 0
round 5.54 0.0572 5.43 5.66 96.9 Inf 0
wide 5.46 0.0572 5.35 5.57 95.5 Inf 0

trtools: :contrast(m,
a = list(route = c("narrow","narrow","round")),
b = list(route = c("round","wide","wide")),
cnames = c("narrow - round","narrow - wide","round - wide"))

estimate se lower upper tvalue df pvalue
narrow - round -0.00909 0.026 -0.0601 0.0419 -0.349 Inf 0.72687
narrow - wide 0.07500 0.026 0.0240 0.1260 2.882 Inf 0.00396
round - wide 0.08409 0.026 0.0331 0.1351 3.231 Inf 0.00123
Some built-in functions also allow us to plot estimates of the §; parameters.

lattice: :dotplot(ranef(m, condVar = TRUE))
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Alternatively you can use the ranef function to return these estimates and plot them using ggplot or
something else.

d <- as.data.frame(ranef(m))

head(d)
grpvar term grp condval condsd
1 player (Intercept) a -0.0277 0.0489
2 player (Intercept) b 0.2451 0.0489
3 player (Intercept) ¢ -0.0759 0.0489
4 player (Intercept) d -0.0277 0.0489
5 player (Intercept) e 0.2932 0.0489
6 player (Intercept) f 0.0204 0.0489
d <- d |> mutate(lower = condval - 1.96 * condsd, upper = condval + 1.96 * condsd)

head (d)

grpvar term grp condval condsd lower upper
1 player (Intercept) a -0.0277 0.0489 -0.1236 0.0681
2 player (Intercept) b 0.2451 0.0489 0.1493 0.3410
3 player (Intercept) c -0.0759 0.0489 -0.1717 0.0200
4 player (Intercept) d -0.0277 0.0489 -0.1236 0.0681
5 player (Intercept) e 0.2932 0.0489 0.1974 0.3891
6 player (Intercept) f 0.0204 0.0489 -0.0754 0.1163
p <- ggplot(d, aes(x = grp, y = condval)) +

geom_linerange (aes(ymin = lower, ymax = upper)) +

geom_point(size = 1.5) +

theme_minimal() + coord_flip() +

labs(x = "Player", y = "Estimated Player Effect")
plot(p)
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Example: Now consider again the Sitka data.

library (MASS)
head(Sitka, 10)

size Time tree
1 4.51 152 1
2 4.98 174 1
3 5.41 201 1
4 5.90 227 1
5 6.15 258 1
6 4.24 152 2
7 4.20 174 2
8 4.68 201 2
9 4.92 227 2
10 4.96 258 2

Sitka$treesize <-

p <- ggplot(Sitka,
geom_line(aes(group = tree), alpha = 0.75, linewidth = 0.1) +

treat
ozone
ozone
ozone
ozone
ozone
ozone
ozone
ozone
ozone
ozone

exp(Sitka$size)
aes(x = Time, y = treesize)) +

facet_wrap(~ treat) + geom_point(size = 0.5) +
labs(y = "Size (height times squared diameter)",
x = "Days Since January 1, 1988") + theme_minimal()

plot(p)
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First let’s consider the model

E(Yi;) = Bo + fiziji + Pazijo + Bazijz + 04,
where Yj; is the j-th observation of size for the i-th tree, x;;; is an indicator for treatment (ozone), Tijo is
time, and Tij3 = Tij1Lij2-
m <- lmer(treesize ~ treat * Time + (1 | tree), data = Sitka)
summary (m)

Linear mixed model fit by REML ['lmerMod']

Formula: treesize ~ treat * Time + (1 | tree)
Data: Sitka

REML criterion at convergence: 4472
Scaled residuals:

Min 1Q Median 3Q Max
-2.811 -0.436 -0.027 0.350 3.620

Random effects:

Groups  Name Variance Std.Dev.
tree (Intercept) 8827 94.0
Residual 2857 53.5

Number of obs: 395, groups: tree, 79

Fixed effects:
Estimate Std. Error t value



(Intercept) -305.123 32.256 -9.46

treatozone 110.675 39.014 2.84
Time 2.509 0.127 19.70
treatozone:Time -0.788 0.154 -5.12

Correlation of Fixed Effects:
(Intr) tretzn Time
treatozone -0.827

Time -0.799 0.661
treatozn:Tm 0.661 -0.799 -0.827
Sitka$yhat.sub <- predict(m) # for each tree (with deltas)

Sitka$yhat.avg <- predict(m, re.form = NA) # for the "average" tree (deltas = 0)

p <- ggplot(Sitka, aes(x = Time, y = treesize)) +
labs(y = "Size (height times squared diameter)",
x = "Days Since January 1, 1988") +
theme_minimal() + facet_wrap(~treat) +
geom_line(aes(y = yhat.sub, group = tree), color = grey(0.75)) +
geom_line(aes(y = yhat.avg), linewidth = 0.75) +
geom_point (size = 0.5)

plot(p)
control ozone
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This doesn’t really capture differences in the growth rates between trees (i.e., an interaction between tree
and time). Such a model could be written as

E(Yij) = Bo + Bixiji + Bazijo + Baxijz + 0 + vi%ijo,



where now there are two random parameters for each tree: d; and ;. We can also write this model as

B(Y) = Bo + 0i + (B2 + vi)tsj, if the treatment is control,
Y Bo + b1+ i + (B2 + B3 + vi)tij, if the treatment is ozone,
where t;; is time. This means that the linear relationship between time and expected size varies over treatment
conditions, but also trees — i.e., each tree has its own intercept and slope (rate).

m <- lmer(treesize ~ treat * Time + (1 + Time | tree), data = Sitka)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to
converge with max|grad| = 7.6716 (tol = 0.002, component 1)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidenti:
- Rescale variables?

Oh no! Models with random effects are cranky. But let’s take the advice of the warning and re-scale time
from days to weeks.

m <- lmer(treesize ~ treat * I(Time/7) + (1 + I(Time/7) | tree), data = Sitka)
summary (m)

Linear mixed model fit by REML ['lmerMod']
Formula: treesize ~ treat * I(Time/7) + (1 + I(Time/7) | tree)
Data: Sitka

REML criterion at convergence: 3915
Scaled residuals:

Min 1Q Median 3Q Max
-2.963 -0.394 -0.049 0.391 4.816

Random effects:

Groups  Name Variance Std.Dev. Corr

tree (Intercept) 22745.6 150.82
I(Time/7) 70.2 8.38 -0.99

Residual 383.2 19.58

Number of obs: 395, groups: tree, 79

Fixed effects:
Estimate Std. Error t value

(Intercept) -305.12 31.65 -9.64
treatozone 110.68 38.29 2.89
I(Time/7) 17.56 1.71 10.29
treatozone:I(Time/7) -5.52 2.06 -2.67

Correlation of Fixed Effects:
(Intr) tretzn I(T/7)

treatozone -0.827

I(Time/7) -0.980 0.810

trtz:I(T/7) 0.810 -0.980 -0.827

Here’s a plot.

Sitka$yhat.sub <- predict(m) # for each tree (with deltas)
Sitka$yhat.avg <- predict(m, re.form = NA) # for the "average" tree (deltas = 0)

p <- ggplot(Sitka, aes(x = Time, y = exp(size))) +



labs(y = "Size (height times squared diameter)",
x = "Days Since January 1, 1988") +
theme_minimal() + facet_wrap(~treat) +
geom_line(aes(y = yhat.sub, group = tree), color = grey(0.75)) +
geom_line(aes(y = yhat.avg), linewidth = 0.75) +
geom_point(size = 0.5)
plot(p)
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Now we can estimate and compare the (average) growth rates in the control and ozone conditions.
pairs(emmeans(m, ~Time|treat, at = list(Time = c(2,1))))
treat = control:

contrast estimate SE df t.ratio p.value

Time2 - Timel 2.51 0.244 77 10.290 <.0001
treat = ozone:

contrast estimate SE df t.ratio p.value

Time2 - Timel 1.72 0.166 77 10.370 <.0001

Degrees-of-freedom method: kenward-roger

pairs(pairs(emmeans(m, ~Time|treat, at = list(Time = c(2,1)))), by = NULL)

contrast estimate SE df t.ratio p.value
(Time2 - Timel control) - (Time2 - Timel ozone) 0.788 0.295 77 2.672 0.0092

Degrees-of-freedom method: kenward-roger
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We can plot estimates of the §; and ~; parameters for each tree.

# lattice::dotplot (ranef(m, condVar = TRUE))
d <- as.data.frame(ranef(m))

head(d)

grpvar term grp condval condsd
1 tree (Intercept) 1 -240.2 37.5
2 tree (Intercept) 2 110.1 37.5
3 tree (Intercept) 3 87.7 37.5
4  tree (Intercept) 4 52.1  37.5
5 tree (Intercept) 5 -330.6 37.5
6 tree (Intercept) 6 -141.2 37.5

d <- d |> mutate(lower = condval - 1.96 * condsd, upper = condval + 1.96 * condsd)

head (d)
grpvar term grp condval condsd lower wupper
1 tree (Intercept) 1 -240.2 37.5 -313.6 -166.8
2  tree (Intercept) 2 110.1 37.5 36.7 183.5
3 tree (Intercept) 3 87.7 37.5 14.3 161.1
4 tree (Intercept) 4 52.1 37.5 -21.3 125.5
5 tree (Intercept) 5 -330.6 37.5 -404.0 -257.2
6 tree (Intercept) 6 -141.2 37.5 -214.6 -67.8
p <- ggplot(d, aes(x = grp = condval, color = term)) +

> ¥
geom_linerange(aes(ymin = lower, ymax = upper)) +
geom_point(size = 1) +
theme_minimal() + coord_flip() +

labs(x = "Tree", y = "Estimated Tree Effects", color = "Term") +
theme (axis.text.y = element_text(size = 5))
plot(p)

11
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Example: Consider again the smoking cessation meta analysis data.
library(dplyr)

library(tidyr)

quitsmoke <- HSAUR3::smoking

quitsmoke$study <- rownames(quitsmoke)
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quitsmoke.quits <- quitsmoke |> dplyr::select(study, qt, qc) [|>
rename(gum = qt, control = qc) |[>
gather(gum, control, key = treatment, value = quit)
quitsmoke.total <- quitsmoke |> dplyr::select(study, tt, tc) [>
rename(gum = tt, control = tc) |>
gather(gum, control, key = treatment, value = total)
quitsmoke <- full_join(quitsmoke.quits, quitsmoke.total) |>
mutate(study = factor(study)) |> arrange(study)
head (quitsmoke)

study treatment quit total

1 Blondal89 gum 37 92
2 Blondal89 control 24 90
3  Campbell9l gum 21 107
4  Campbell9l control 21 105
5 Fagerstrom82 gum 30 50

6 Fagerstrom82 control 23 50

We can introduce a random “study effect” into a logistic regression model to create a generalized linear mized
effects regression model. This would be written as

. [ E(Yy)

l—E(YlJ = o + Przij + 0s,

where Yj; is the j-th proportion of people quitting in the i-th study, and z;; is an indicator variable for
treatment (gum). This model can be estimated as follows.

m <- glmer(cbind(quit, total - quit) ~ treatment + (1 | study),
family = binomial, data = quitsmoke)
summary (m)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: cbind(quit, total - quit) ~ treatment + (1 | study)

Data: quitsmoke

AIC BIC logLik -2*log(L) df.resid
367 373 -181 361 49

Scaled residuals:
Min 1Q Median 3Q Max
-1.9940 -0.6602 -0.0373 0.4633 2.3042

Random effects:

Groups Name Variance Std.Dev.
study (Intercept) 0.412 0.642
Number of obs: 52, groups: study, 26

Fixed effects:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.3625 0.1376 -9.90 < 2e-16 **x*
treatmentgum  0.5149 0.0655 7.87 3.6e-15 *x*x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

13



(Intr)
treatmentgm -0.281

We can estimate the odds ratio for the treatment, which is assumed to be the same for every study in this
model.

pairs(emmeans(m, ~ treatment, type = "response"), reverse = TRUE)
contrast odds.ratio SE df null z.ratio p.value
gum / control 1.67 0.11 Inf 1 7.870 <.0001

Tests are performed on the log odds ratio scale

We can extend the model so that the treatment effect varies over studies (i.e., an interaction between treatment
and study).

m <- glmer(cbind(quit, total - quit) ~ treatment + (1 + treatment | study),
family = binomial, data = quitsmoke)
summary (m)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: cbind(quit, total - quit) ~ treatment + (1 + treatment | study)

Data: quitsmoke

AIC BIC logLik -2*log(L) df.resid
368 378 -179 358 47

Scaled residuals:
Min 1Q Median 3Q Max
-1.4423 -0.4678 0.0217 0.3796 1.6638

Random effects:

Groups Name Variance Std.Dev. Corr
study (Intercept) 0.4211 0.649
treatmentgum 0.0508  0.225 -0.12

Number of obs: 52, groups: study, 26

Fixed effects:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.3991 0.1415 -9.89 < 2e-16 ***
treatmentgum 0.5723 0.0887 6.45 1.1e-10 ***
Signif. codes: O 'sxx' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr)
treatmentgm -0.340

Now our odds ratios are for a “typical” study.

pairs(emmeans(m, ~ treatment, type = "response"), reverse = TRUE)
contrast odds.ratio SE df null z.ratio p.value
gum / control 1.77 0.157 Inf 1 6.450 <.0001

Tests are performed on the log odds ratio scale
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Note: In logistic regression, if your response variable is binary (i.e., not aggregated counts) use the option
nAGQ = x where x is maybe 214.

Example: Consider a random effects approach for the leprosy data.

library (ALA)
head (leprosy)

id drug period nBacilli
1 1 A pre 11
31 1 A post 6
2 2 B pre 6
32 2 B post 0
3 3 C pre 16
33 3 C post 13

p <- ggplot(leprosy, aes(x = drug, y = nBacilli, fill = period)) +
geom_dotplot(binaxis = "y", method = "histodot",
stackdir = "center", binwidth = 1,
position = position_dodge(width = 0.5)) +
scale_fill_manual(values = c("white","black")) +
labs(x = "Drug", y = "Number of Bacilli", fill = "Period") +
theme_minimal ()
plot(p)
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m <- glmer(nBacilli ~ drug * period + (1 | id),
family = poisson, data = leprosy)
summary (m)
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Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: poisson ( log )
Formula: nBacilli ~ drug * period + (1 | id)

Data: leprosy

AIC BIC logLik -2xlog(L) df.resid
364 379 -175 350 53

Scaled residuals:
Min 1Q Median 3Q Max
-1.8757 -0.5729 0.0637 0.4264 1.9372

Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 0.259 0.509
Number of obs: 60, groups: id, 30

Fixed effects:
Estimate Std. Error z value Pr(>|zl)

(Intercept) 2.0936 0.1953 10.72 < 2e-16 **x*
drugB 0.0506 0.2737 0.19 0.85320
drugC 0.3836 0.2682 1.43 0.15270
periodpost -0.5623 0.1704 -3.30 0.00097 x*x*x
drugB:periodpost  0.0680 0.2344 0.29 0.77164
drugC:periodpost  0.5147 0.2114 2.43 0.01490 *
Signif. codes: O 'x*xkx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) drugB drugC prdpst drgB:p

drugB -0.707
drugC -0.725 0.515
periodpost -0.317 0.226 0.231
drgB:prdpst 0.230 -0.317 -0.168 -0.727
drgC:prdpst 0.255 -0.182 -0.321 -0.806 0.586
Estimated ratios for each drug.
pairs(emmeans(m, ~ period | drug, type = "response"),

reverse = TRUE, infer = TRUE)
drug = A:

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
post / pre 0.570 0.0971 Inf 0.408 0.796 1 -3.300 0.0010
drug = B:

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
post / pre 0.610 0.0982 Inf 0.445 0.836 1 -3.070 0.0020
drug = C:

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
post / pre 0.953 0.1190 Inf 0.746 1.218 1 -0.380 0.7040

Confidence level used: 0.95
Intervals are back-transformed from the log scale
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Tests are performed on the log scale

We can also compare the rate ratios.

pairs(pairs(emmeans(m, ~ period | drug, type = "response"),
reverse = TRUE), by = NULL, adjust = "none"

contrast ratio SE df null z.ratio p.value
(post / pre A) / (post / pre B) 0.934 0.219 Inf 1 -0.290 0.7720
(post / pre A) / (post / pre C) 0.598 0.126 Inf 1 -2.435 0.0150
(post / pre B) / (post / pre C) 0.640 0.130 Inf 1 -2.191 0.0280

Tests are performed on the log scale

But, recall that a fixed-effects approach can also be used here, and the results are very similar!

m <- glm(nBacilli ~ drug * period + factor(id),
family = poisson, data = leprosy)

pairs(emmeans(m, ~ period | drug, type = "response'"),
reverse = TRUE, infer = TRUE)

drug = A:

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
post / pre 0.570 0.0981 Inf 0.407 0.799 1 -3.270 0.0010
drug = B:

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
post / pre 0.610 0.0991 Inf 0.444 0.839 1 -3.040 0.0020
drug = C:

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
post / pre 0.953 0.1200 Inf 0.745 1.221 1 -0.380 0.7050

Results are averaged over the levels of: id
Confidence level used: 0.95

Intervals are back-transformed from the log scale
Tests are performed on the log scale

pairs(pairs(emmeans(m, ~ period | drug, type = "response"),
reverse = TRUE), by = NULL, adjust = "none"

contrast ratio SE df null z.ratio p.value
(post / pre A) / (post / pre B) 0.934 0.221 Inf 1 -0.287 0.7740
(post / pre A) / (post / pre C) 0.598 0.128 Inf 1 -2.413 0.0160
(post / pre B) / (post / pre C) 0.640 0.132 Inf 1 -2.172 0.0300

Results are averaged over the levels of: id
Tests are performed on the log scale
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