Wednesday, April 23

Random Effects Approach

The random effects approach conceptualizes the parameters associated with the levels of the many-leveled factor as *random variables*. Another way to think of this is that the levels of that factor are a *sample* of levels from a real or conceptual population of levels.

Note: We sometimes use the term "mixed effects" model for a model where some parameters are modeled as random and some that are not modeled as random (i.e., fixed). Most (but not all) models with random effects also have some fixed effects, and are thus mixed effects models.

Example: Consider again the baserun data, but a system of subscripts that distinguishes between the *player* and the *observation within each player* so that Y_{ij} is the *j*-th observation of running time for the *i*-th player.

library(trtools) head(baserun)

round narrow wide
1 5.40 5.50 5.55
2 5.85 5.70 5.75
3 5.20 5.60 5.50
4 5.55 5.50 5.40
5 5.90 5.85 5.70
6 5.45 5.55 5.60

If we were to ignore the effect of player we could write a model for these data as

$$E(Y_{ij}) = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2},$$

where x_{i1} and x_{i2} are indicator variables for two of the three routes.

In the fixed effects approach we include an indicator variable for each player, so the model would become

$$E(Y_{ij}) = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \beta_3 x_{ij3} + \beta_4 x_{ij4} + \dots + \beta_{23} x_{ij23},$$

where $x_{ij3}, x_{ij4}, \dots, x_{ij23}$ are the 21 indicator variables for the 22 players.

In the random effects approach we would view $\beta_3, \beta_4, \dots, \beta_{23}$ as random variables. To distinguish the random from the non-random (fixed) parameters I will change the symbols for the indicator variables and the parameters corresponding to the players and write the model as

$$E(Y_{ij}) = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \delta_1 z_{ij1} + \delta_2 z_{ij2} + \dots + \delta_{22} z_{ij22}.$$

Note also that here we have 22 rather than 21 indicator variables (each player has their own parameter). A more compact way to write this model is

$$E(Y_{ij}) = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \underbrace{\delta_1 z_{ij1} + \delta_2 z_{ij2} + \dots + \delta_{22} z_{ij22}}_{\delta_i} = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \delta_i,$$

so that δ_i represents the "random effect" of the *i*-th player.

Another way to write this model is

$$Y_{ij} = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \delta_i + \epsilon_{ij},$$

where ϵ_{ij} is the usual random error term, which is implicitly assumed to be normally-distributed. Thus on the right-hand side of the above expression we have *two* random variables on the right-hand side: δ_i and ϵ_{ij} .

To complete the model a distribution is needed to be assumed for each δ_i . Typically they are assumed to be normally distributed with zero mean and some variance σ_{δ}^2 so that we write $\delta_i \sim N(0, \sigma_{\delta}^2)$. Because the δ_i have a mean of zero they can be viewed as a "deviation" of the effect of the *i*-th player from a (conceptual) average player.

The presence of the random δ_i parameters fundamentally changes the likelihood function. Specialized inferential methods are (usually) necessary to arrive at correct inferences when random effects are specified. As with other approaches functions to implement these methods require that the data be in "long form" so we reshape the baserun data.

```
library(dplyr)
library(tidyr)
baselong <- trtools::baserun |> mutate(player = factor(letters[1:n()])) |>
    pivot_longer(cols = c(round, narrow, wide), names_to = "route", values_to = "time")
head(baselong)
```

```
# A tibble: 6 x 3
  player route
                  time
  <fct>
         <chr>
                 <dbl>
1 a
         round
                  5.4
2 a
         narrow
                 5.5
                  5.55
3 a
         wide
4 b
                  5.85
         round
5 b
         narrow
                  5.7
6 b
                  5.75
         wide
```

The lmer function from the lme4 package can estimate a *linear mixed effects regression* model with normally-distributed random effects. The model above can be estimated as follows.

```
library(lme4)
m <- lmer(time ~ route + (1 | player), data = baselong)
summary(m)</pre>
```

```
Linear mixed model fit by REML ['lmerMod']
Formula: time ~ route + (1 | player)
Data: baselong
```

REML criterion at convergence: -51.4

Scaled residuals:

```
Min 1Q Median 3Q Max
-3.0968 -0.3473 0.0031 0.5001 1.6424
```

Random effects:

```
Groups Name Variance Std.Dev.
player (Intercept) 0.06448 0.2539
Residual 0.00745 0.0863
Number of obs: 66, groups: player, 22
```

Fixed effects:

```
Estimate Std. Error t value (Intercept) 5.53409 0.05718 96.78 routeround 0.00909 0.02603 0.35 routewide -0.07500 0.02603 -2.88
```

Profile likelihood confidence intervals for σ_{δ}^2 (the variance of the δ_i parameters), σ^2 (the variance of ϵ_{ij}), and β_0 , β_1 , and β_2 can be obtained using confint.

confint(m)

```
2.5 % 97.5 % .sig01 0.1869 0.3475 .sigma 0.0694 0.1056 (Intercept) 5.4202 5.6479 routeround -0.0419 0.0600 routewide -0.1259 -0.0241
```

Using lincon will produce Wald confidence intervals for β_0 , β_1 , and β_2 .

```
trtools::lincon(m)
```

```
estimate se lower upper tvalue df pvalue (Intercept) 5.53409\ 0.0572\ 5.4220\ 5.6462\ 96.784\ Inf\ 0.00000 routeround 0.00909\ 0.0260\ -0.0419\ 0.0601\ 0.349\ Inf\ 0.72687 routewide -0.07500\ 0.0260\ -0.1260\ -0.0240\ -2.882\ Inf\ 0.00396
```

Other inferences can be made using trtools::contrast and the emmeans package, but note that player is never specified when using these functions. These tools provide inferences only for the "fixed effects" of the model. We can estimate the expected running time for each route.

```
library(emmeans)
emmeans(m, ~route)
```

```
route emmean SE df lower.CL upper.CL narrow 5.53 0.0572 24.2 5.42 5.65 round 5.54 0.0572 24.2 5.43 5.66 wide 5.46 0.0572 24.2 5.34 5.58
```

Degrees-of-freedom method: kenward-roger

Confidence level used: 0.95

```
trtools::contrast(m, a = list(route = c("narrow", "round", "wide")),
  cnames = c("narrow", "round", "wide"))
```

```
      estimate
      se lower upper tvalue
      df pvalue

      narrow
      5.53 0.0572
      5.42 5.65 96.8 Inf
      0

      round
      5.54 0.0572
      5.43 5.66 96.9 Inf
      0

      wide
      5.46 0.0572
      5.35 5.57 95.5 Inf
      0
```

Notice that emmeans uses the "Kenward-Roger" method of computing approximate degrees of freedom. The issue of degrees of freedom is a difficult problem in models with random effects. Some statisticians suggest just using Wald methods which specify infinite degrees of freedom as an approximation (which is the default in my functions). This can be done using the lmer.df = "asymptotic" option.

```
emmeans(m, ~route, lmer.df = "asymptotic")
```

```
route emmean SE df asymp.LCL asymp.UCL narrow 5.53 0.0572 Inf 5.42 5.65
```

```
5.66
 round
         5.54 0.0572 Inf
                              5.43
 wide
         5.46 0.0572 Inf
                              5.35
                                        5.57
Degrees-of-freedom method: asymptotic
Confidence level used: 0.95
We can also compare the routes as before.
pairs(emmeans(m, ~ route, lmer.df = "asymptotic"), adjust = "none", infer = TRUE)
                           SE df asymp.LCL asymp.UCL z.ratio p.value
               estimate
narrow - round -0.0091 0.026 Inf
                                     -0.0601
                                               0.0419 -0.350 0.7270
narrow - wide
                 0.0750 0.026 Inf
                                     0.0240
                                               0.1260
                                                        2.880 0.0040
                 0.0841 0.026 Inf
                                      0.0331
                                               0.1351
round - wide
                                                        3.230 0.0010
Degrees-of-freedom method: asymptotic
Confidence level used: 0.95
trtools::contrast(m, a = list(route = c("narrow", "round", "wide")),
cnames = c("narrow", "round", "wide"))
                   se lower upper tvalue df pvalue
       estimate
narrow
          5.53 0.0572 5.42 5.65
                                    96.8 Inf
                                                   0
round
          5.54 0.0572 5.43 5.66
                                     96.9 Inf
                                                   0
wide
          5.46 0.0572 5.35 5.57
                                     95.5 Inf
                                                  0
trtools::contrast(m,
 a = list(route = c("narrow", "narrow", "round")),
 b = list(route = c("round", "wide", "wide")),
cnames = c("narrow - round", "narrow - wide", "round - wide"))
               estimate
                          se lower upper tvalue df pvalue
narrow - round -0.00909 0.026 -0.0601 0.0419 -0.349 Inf 0.72687
```

Some built-in functions also allow us to plot estimates of the δ_i parameters.

0.07500 0.026 0.0240 0.1260 2.882 Inf 0.00396

0.08409 0.026 0.0331 0.1351 3.231 Inf 0.00123

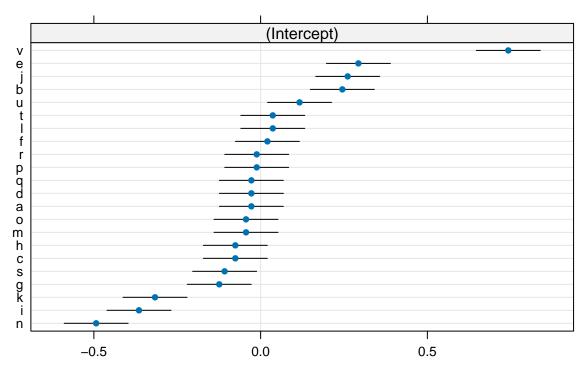
lattice::dotplot(ranef(m, condVar = TRUE))

\$player

narrow - wide

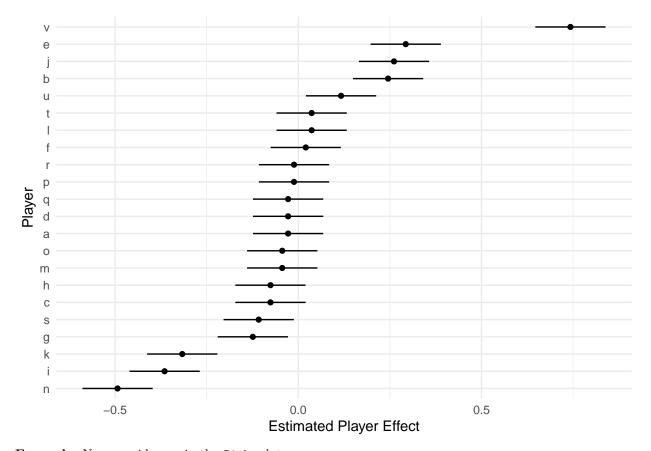
round - wide

player



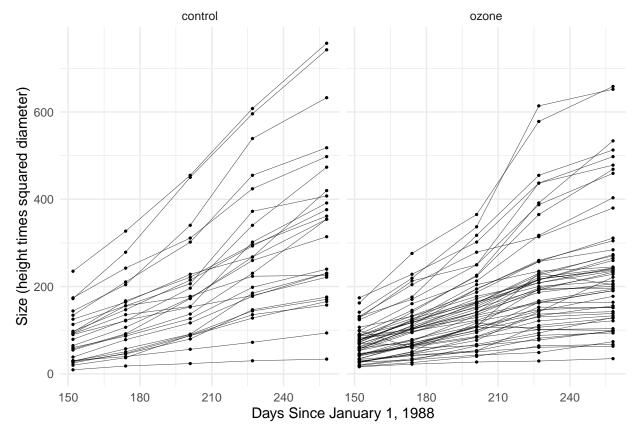
Alternatively you can use the ranef function to return these estimates and plot them using ggplot or something else.

```
d <- as.data.frame(ranef(m))</pre>
head(d)
  grpvar
                term grp condval condsd
1 player (Intercept)
                       a -0.0277 0.0489
2 player (Intercept)
                       b 0.2451 0.0489
3 player (Intercept)
                       c -0.0759 0.0489
4 player (Intercept)
                       d -0.0277 0.0489
5 player (Intercept)
                       e 0.2932 0.0489
6 player (Intercept)
                       f 0.0204 0.0489
d <- d |> mutate(lower = condval - 1.96 * condsd, upper = condval + 1.96 * condsd)
head(d)
                term grp condval condsd
  grpvar
                                         lower upper
1 player (Intercept)
                       a -0.0277 0.0489 -0.1236 0.0681
2 player (Intercept)
                       b 0.2451 0.0489 0.1493 0.3410
3 player (Intercept)
                       c -0.0759 0.0489 -0.1717 0.0200
4 player (Intercept)
                       d -0.0277 0.0489 -0.1236 0.0681
5 player (Intercept)
                       e 0.2932 0.0489 0.1974 0.3891
6 player (Intercept)
                       f 0.0204 0.0489 -0.0754 0.1163
p <- ggplot(d, aes(x = grp, y = condval)) +</pre>
  geom_linerange(aes(ymin = lower, ymax = upper)) +
  geom_point(size = 1.5) +
  theme minimal() + coord flip() +
  labs(x = "Player", y = "Estimated Player Effect")
plot(p)
```



Example: Now consider again the Sitka data.

```
library(MASS)
head(Sitka, 10)
   size Time tree treat
1 4.51
        152
                1 ozone
  4.98
        174
                1 ozone
3
  5.41
        201
                1 ozone
4 5.90 227
                1 ozone
5 6.15 258
                1 ozone
  4.24 152
                2 ozone
7 4.20 174
                2 ozone
8 4.68 201
                2 ozone
9 4.92 227
                2 ozone
10 4.96 258
                2 ozone
Sitka$treesize <- exp(Sitka$size)</pre>
p <- ggplot(Sitka, aes(x = Time, y = treesize)) +</pre>
 geom_line(aes(group = tree), alpha = 0.75, linewidth = 0.1) +
  facet_wrap(~ treat) + geom_point(size = 0.5) +
  labs(y = "Size (height times squared diameter)",
   x = "Days Since January 1, 1988") + theme_minimal()
plot(p)
```



First let's consider the model

$$E(Y_{ij}) = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \beta_3 x_{ij3} + \delta_i,$$

where Y_{ij} is the j-th observation of size for the i-th tree, x_{ij1} is an indicator for treatment (ozone), x_{ij2} is time, and $x_{ij3} = x_{ij1}x_{ij2}$.

```
m <- lmer(treesize ~ treat * Time + (1 | tree), data = Sitka)
summary(m)</pre>
```

Linear mixed model fit by REML ['lmerMod']

Formula: treesize ~ treat * Time + (1 | tree)

Data: Sitka

REML criterion at convergence: 4472

Scaled residuals:

Min 1Q Median 3Q Max -2.811 -0.436 -0.027 0.350 3.620

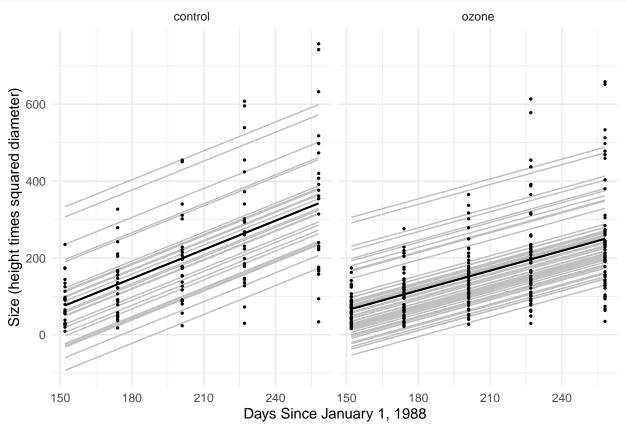
Random effects:

Groups Name Variance Std.Dev.
tree (Intercept) 8827 94.0
Residual 2857 53.5
Number of obs: 395, groups: tree, 79

Fixed effects:

Estimate Std. Error t value

```
(Intercept)
                -305.123
                              32.256
                                       -9.46
treatozone
                  110.675
                              39.014
                                        2.84
Time
                    2.509
                                       19.70
                               0.127
                   -0.788
                               0.154
                                       -5.12
treatozone: Time
Correlation of Fixed Effects:
            (Intr) tretzn Time
            -0.827
treatozone
Time
            -0.799 0.661
treatozn:Tm 0.661 -0.799 -0.827
Sitka$yhat.sub <- predict(m)</pre>
                                            # for each tree (with deltas)
Sitka$yhat.avg <- predict(m, re.form = NA) # for the "average" tree (deltas = 0)
p <- ggplot(Sitka, aes(x = Time, y = treesize)) +</pre>
  labs(y = "Size (height times squared diameter)",
    x = "Days Since January 1, 1988") +
  theme_minimal() + facet_wrap(~treat) +
  geom_line(aes(y = yhat.sub, group = tree), color = grey(0.75)) +
  geom_line(aes(y = yhat.avg), linewidth = 0.75) +
  geom_point(size = 0.5)
plot(p)
```



This doesn't really capture differences in the growth rates between trees (i.e., an *interaction* between tree and time). Such a model could be written as

$$E(Y_{ij}) = \beta_0 + \beta_1 x_{ij1} + \beta_2 x_{ij2} + \beta_3 x_{ij3} + \delta_i + \gamma_i x_{ij2},$$

where now there are two random parameters for each tree: δ_i and γ_i . We can also write this model as

$$E(Y_{ij}) = \begin{cases} \beta_0 + \delta_i + (\beta_2 + \gamma_i)t_{ij}, & \text{if the treatment is control,} \\ \beta_0 + \beta_1 + \delta_i + (\beta_2 + \beta_3 + \gamma_i)t_{ij}, & \text{if the treatment is ozone,} \end{cases}$$

where t_{ij} is time. This means that the linear relationship between time and expected size varies over treatment conditions, but also trees — i.e., each tree has its own intercept and slope (rate).

```
m <- lmer(treesize ~ treat * Time + (1 + Time | tree), data = Sitka)
```

Warning in checkConv(attr(opt, "derivs"), opt\$par, ctrl = control\$checkConv, : Model failed to converge with max|grad| = 7.6716 (tol = 0.002, component 1)

Warning in checkConv(attr(opt, "derivs"), opt\$par, ctrl = control\$checkConv, : Model is nearly unidenti- Rescale variables?

Oh no! Models with random effects are cranky. But let's take the advice of the warning and re-scale time from days to weeks.

```
m <- lmer(treesize ~ treat * I(Time/7) + (1 + I(Time/7) | tree), data = Sitka)
summary(m)</pre>
```

```
Linear mixed model fit by REML ['lmerMod']
```

Formula: treesize ~ treat * I(Time/7) + (1 + I(Time/7) | tree)

Data: Sitka

REML criterion at convergence: 3915

Scaled residuals:

```
Min 1Q Median 3Q Max -2.963 -0.394 -0.049 0.391 4.816
```

Random effects:

Groups Name Variance Std.Dev. Corr tree (Intercept) 22745.6 150.82 I(Time/7) 70.2 8.38 -0.99 Residual 383.2 19.58

Number of obs: 395, groups: tree, 79

Fixed effects:

	Estimate St	d. Error t	value
(Intercept)	-305.12	31.65	-9.64
treatozone	110.68	38.29	2.89
I(Time/7)	17.56	1.71	10.29
<pre>treatozone:I(Time/7)</pre>	-5.52	2.06	-2.67

Correlation of Fixed Effects:

(Intr) tretzn I(T/7)

treatozone -0.827

I(Time/7) -0.980 0.810

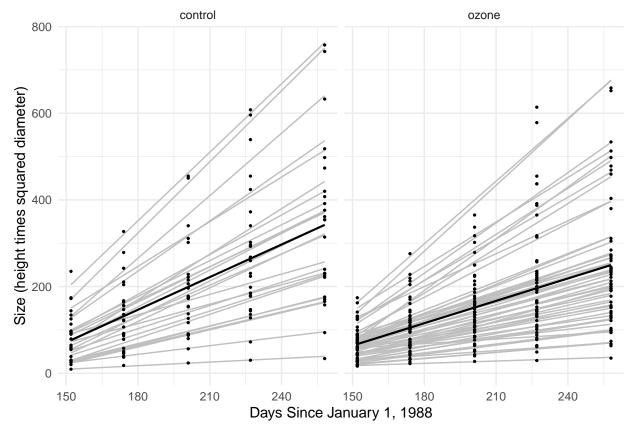
trtz:I(T/7) 0.810 -0.980 -0.827

Here's a plot.

```
Sitka$yhat.sub <- predict(m)  # for each tree (with deltas)
Sitka$yhat.avg <- predict(m, re.form = NA) # for the "average" tree (deltas = 0)

p <- ggplot(Sitka, aes(x = Time, y = exp(size))) +
```

```
labs(y = "Size (height times squared diameter)",
    x = "Days Since January 1, 1988") +
    theme_minimal() + facet_wrap(~treat) +
    geom_line(aes(y = yhat.sub, group = tree), color = grey(0.75)) +
    geom_line(aes(y = yhat.avg), linewidth = 0.75) +
    geom_point(size = 0.5)
plot(p)
```



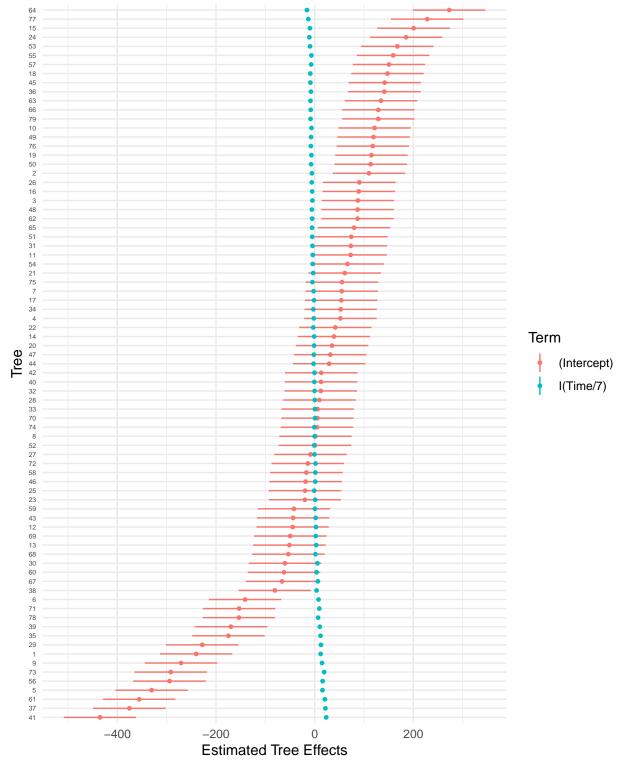
Now we can estimate and compare the (average) growth rates in the control and ozone conditions.

```
pairs(emmeans(m, ~Time|treat, at = list(Time = c(2,1))))
treat = control:
 contrast
              estimate
                           SE df t.ratio p.value
                   2.51 0.244 77 10.290 <.0001
Time2 - Time1
treat = ozone:
 contrast
               estimate
                           SE df t.ratio p.value
                   1.72 0.166 77 10.370 <.0001
Time2 - Time1
Degrees-of-freedom method: kenward-roger
pairs(pairs(emmeans(m, ~Time|treat, at = list(Time = c(2,1)))), by = NULL)
 contrast
                                                 estimate
                                                             SE df t.ratio p.value
 (Time2 - Time1 control) - (Time2 - Time1 ozone)
                                                    0.788 0.295 77
                                                                     2.672 0.0092
```

Degrees-of-freedom method: kenward-roger

We can plot estimates of the δ_i and γ_i parameters for each tree.

```
# lattice::dotplot(ranef(m, condVar = TRUE))
d <- as.data.frame(ranef(m))</pre>
head(d)
               term grp condval condsd
 grpvar
  tree (Intercept) 1 -240.2
                                37.5
                        110.1
                                37.5
2
  tree (Intercept)
                     2
3 tree (Intercept)
                         87.7 37.5
                    3
4 tree (Intercept)
                    4
                          52.1 37.5
  tree (Intercept) 5 -330.6
                               37.5
5
6 tree (Intercept)
                    6 -141.2 37.5
d <- d |> mutate(lower = condval - 1.96 * condsd, upper = condval + 1.96 * condsd)
 grpvar
               term grp condval condsd lower upper
  tree (Intercept) 1 -240.2 37.5 -313.6 -166.8
1
                       110.1 37.5 36.7 183.5
2
  tree (Intercept)
                    2
3 tree (Intercept)
                    3
                         87.7 37.5 14.3 161.1
4 tree (Intercept) 4
                          52.1 37.5 -21.3 125.5
5 tree (Intercept) 5 -330.6 37.5 -404.0 -257.2
6 tree (Intercept) 6 -141.2 37.5 -214.6 -67.8
p <- ggplot(d, aes(x = grp, y = condval, color = term)) +</pre>
 geom_linerange(aes(ymin = lower, ymax = upper)) +
 geom_point(size = 1) +
 theme_minimal() + coord_flip() +
 labs(x = "Tree", y = "Estimated Tree Effects", color = "Term") +
 theme(axis.text.y = element_text(size = 5))
plot(p)
```



Example: Consider again the smoking cessation meta analysis data.

```
library(dplyr)
library(tidyr)
quitsmoke <- HSAUR3::smoking
quitsmoke$study <- rownames(quitsmoke)</pre>
```

```
quitsmoke.quits <- quitsmoke |> dplyr::select(study, qt, qc) |>
  rename(gum = qt, control = qc) |>
  gather(gum, control, key = treatment, value = quit)
quitsmoke.total <- quitsmoke |> dplyr::select(study, tt, tc) |>
  rename(gum = tt, control = tc) |>
  gather(gum, control, key = treatment, value = total)
quitsmoke <- full_join(quitsmoke.quits, quitsmoke.total) |>
  mutate(study = factor(study)) |> arrange(study)
head(quitsmoke)
```

```
study treatment quit total
     Blondal89
                           37
                     gum
2
    Blondal89
                                 90
                 control
                           24
3
   Campbell91
                           21
                                107
                     gum
                                105
   Campbell91
                           21
                 control
5 Fagerstrom82
                     gum
                           30
                                 50
6 Fagerstrom82
                           23
                                 50
                 control
```

We can introduce a random "study effect" into a logistic regression model to create a generalized linear mixed effects regression model. This would be written as

$$\log\left[\frac{E(Y_{ij})}{1 - E(Y_{ij})}\right] = \beta_0 + \beta_1 x_{ij} + \delta_i,$$

where Y_{ij} is the j-th proportion of people quitting in the i-th study, and x_{ij} is an indicator variable for treatment (gum). This model can be estimated as follows.

```
m <- glmer(cbind(quit, total - quit) ~ treatment + (1 | study),
  family = binomial, data = quitsmoke)
summary(m)</pre>
```

```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
```

Family: binomial (logit)

Formula: cbind(quit, total - quit) ~ treatment + (1 | study)

Data: quitsmoke

```
AIC BIC logLik -2*log(L) df.resid
367 373 -181 361 49
```

Scaled residuals:

```
Min 1Q Median 3Q Max
-1.9940 -0.6602 -0.0373 0.4633 2.3042
```

Random effects:

```
Groups Name Variance Std.Dev. study (Intercept) 0.412 0.642
Number of obs: 52, groups: study, 26
```

Fixed effects:

Correlation of Fixed Effects:

```
(Intr) treatmentgm -0.281
```

We can estimate the odds ratio for the treatment, which is assumed to be the same for every study in this model.

```
pairs(emmeans(m, ~ treatment, type = "response"), reverse = TRUE)
                            SE df null z.ratio p.value
contrast
               odds.ratio
gum / control
                     1.67 0.11 Inf
                                       1
                                          7.870 <.0001
Tests are performed on the log odds ratio scale
We can extend the model so that the treatment effect varies over studies (i.e., an interaction between treatment
and study).
m <- glmer(cbind(quit, total - quit) ~ treatment + (1 + treatment | study),</pre>
 family = binomial, data = quitsmoke)
summary(m)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial (logit)
Formula: cbind(quit, total - quit) ~ treatment + (1 + treatment | study)
  Data: quitsmoke
      AIC
                BIC
                       logLik -2*log(L) df.resid
      368
                378
                         -179
                                     358
                                                47
Scaled residuals:
             1Q Median
                             3Q
-1.4423 -0.4678 0.0217 0.3796 1.6638
Random effects:
                     Variance Std.Dev. Corr
Groups Name
study (Intercept) 0.4211
                              0.649
        treatmentgum 0.0508
                              0.225
                                        -0.12
Number of obs: 52, groups: study, 26
Fixed effects:
             Estimate Std. Error z value Pr(>|z|)
                                  -9.89 < 2e-16 ***
(Intercept)
              -1.3991
                          0.1415
               0.5723
                          0.0887
                                     6.45 1.1e-10 ***
treatmentgum
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
            (Intr)
treatmentgm -0.340
Now our odds ratios are for a "typical" study.
pairs(emmeans(m, ~ treatment, type = "response"), reverse = TRUE)
 contrast
               odds.ratio
                             SE df null z.ratio p.value
                                            6.450 <.0001
gum / control
                     1.77 0.157 Inf
                                        1
```

Tests are performed on the log odds ratio scale

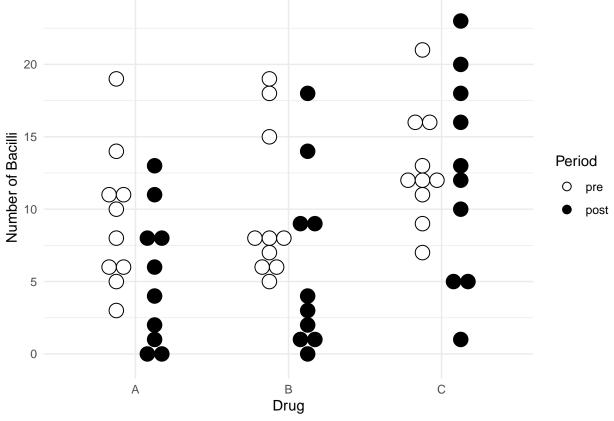
Note: In logistic regression, if your response variable is binary (i.e., not aggregated counts) use the option nAGQ = x where x is maybe 21+.

Example: Consider a random effects approach for the leprosy data.

plot(p)

```
library(ALA)
head(leprosy)
```

```
id drug period nBacilli
1
    1
         Α
              pre
         Α
                          6
31
    1
             post
2
    2
         В
                          6
              pre
   2
                          0
32
         В
             post
3
    3
         С
                         16
              pre
33
             post
                         13
p <- ggplot(leprosy, aes(x = drug, y = nBacilli, fill = period)) +</pre>
  geom_dotplot(binaxis = "y", method = "histodot",
    stackdir = "center", binwidth = 1,
    position = position_dodge(width = 0.5)) +
  scale_fill_manual(values = c("white","black")) +
  labs(x = "Drug", y = "Number of Bacilli", fill = "Period") +
  theme_minimal()
```



```
m <- glmer(nBacilli ~ drug * period + (1 | id),
  family = poisson, data = leprosy)
summary(m)</pre>
```

```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: poisson (log)
Formula: nBacilli ~ drug * period + (1 | id)
  Data: leprosy
      AIC
                      logLik -2*log(L) df.resid
               BIC
      364
                379
                        -175
                                   350
Scaled residuals:
   Min
            1Q Median
                            3Q
                                   Max
-1.8757 -0.5729 0.0637 0.4264 1.9372
Random effects:
Groups Name
                   Variance Std.Dev.
        (Intercept) 0.259
                            0.509
Number of obs: 60, groups: id, 30
Fixed effects:
                Estimate Std. Error z value Pr(>|z|)
                             0.1953 10.72 < 2e-16 ***
(Intercept)
                  2.0936
drugB
                  0.0506
                             0.2737
                                       0.19 0.85320
drugC
                  0.3836
                             0.2682
                                       1.43 0.15270
periodpost
                 -0.5623
                             0.1704
                                     -3.30 0.00097 ***
drugB:periodpost
                  0.0680
                             0.2344
                                       0.29 0.77164
                                       2.43 0.01490 *
drugC:periodpost
                  0.5147
                             0.2114
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
            (Intr) drugB drugC prdpst drgB:p
drugB
            -0.707
drugC
            -0.725 0.515
periodpost -0.317 0.226 0.231
drgB:prdpst 0.230 -0.317 -0.168 -0.727
drgC:prdpst 0.255 -0.182 -0.321 -0.806 0.586
Estimated ratios for each drug.
pairs(emmeans(m, ~ period | drug, type = "response"),
 reverse = TRUE, infer = TRUE)
drug = A:
 contrast
           ratio
                     SE df asymp.LCL asymp.UCL null z.ratio p.value
post / pre 0.570 0.0971 Inf
                                0.408
                                          0.796
                                                   1 -3.300 0.0010
drug = B:
 contrast
                     SE df asymp.LCL asymp.UCL null z.ratio p.value
           ratio
post / pre 0.610 0.0982 Inf
                                0.445
                                          0.836
                                                   1 -3.070 0.0020
drug = C:
                     SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
           ratio
post / pre 0.953 0.1190 Inf
                                0.746
                                          1.218
                                                 1 -0.380 0.7040
Confidence level used: 0.95
```

Intervals are back-transformed from the log scale

Tests are performed on the log scale

We can also compare the rate ratios.

```
pairs(pairs(emmeans(m, ~ period | drug, type = "response"),
 reverse = TRUE), by = NULL, adjust = "none")
 contrast
                                          SE df null z.ratio p.value
                                 ratio
 (post / pre A) / (post / pre B) 0.934 0.219 Inf
                                                    1 -0.290 0.7720
 (post / pre A) / (post / pre C) 0.598 0.126 Inf
                                                    1 -2.435 0.0150
 (post / pre B) / (post / pre C) 0.640 0.130 Inf
                                                    1 -2.191 0.0280
Tests are performed on the log scale
But, recall that a fixed-effects approach can also be used here, and the results are very similar!
m <- glm(nBacilli ~ drug * period + factor(id),</pre>
 family = poisson, data = leprosy)
pairs(emmeans(m, ~ period | drug, type = "response"),
 reverse = TRUE, infer = TRUE)
drug = A:
 contrast
           ratio
                      SE df asymp.LCL asymp.UCL null z.ratio p.value
post / pre 0.570 0.0981 Inf
                                 0.407
                                           0.799
                                                    1 -3.270 0.0010
drug = B:
                      SE df asymp.LCL asymp.UCL null z.ratio p.value
contrast
           ratio
                                 0.444
                                                    1 -3.040 0.0020
post / pre 0.610 0.0991 Inf
                                           0.839
drug = C:
contrast
                      SE df asymp.LCL asymp.UCL null z.ratio p.value
           ratio
post / pre 0.953 0.1200 Inf
                                 0.745
                                           1.221
                                                   1 -0.380 0.7050
Results are averaged over the levels of: id
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
pairs(pairs(emmeans(m, ~ period | drug, type = "response"),
 reverse = TRUE), by = NULL, adjust = "none")
 contrast
                                 ratio
                                          SE df null z.ratio p.value
 (post / pre A) / (post / pre B) 0.934 0.221 Inf
                                                    1 -0.287 0.7740
 (post / pre A) / (post / pre C) 0.598 0.128 Inf
                                                    1 -2.413 0.0160
 (post / pre B) / (post / pre C) 0.640 0.132 Inf
                                                    1 -2.172 0.0300
Results are averaged over the levels of: id
```

Results are averaged over the levels of: id Tests are performed on the log scale