
Wednesday, April 9

Proportional Hazards and the Survival Function
Let h0(t) and S0(t) be the “baseline” hazard and survival functions (i.e., the function when all xj = 0). If
the proportional hazards assumption hold so that

h(t) = h0(t)eβ1x1eβ2x2 · · · eβkxk ,

then it can be shown that
S(t) = S0(t)η where η = eβ1x1eβ2x2 · · · eβkxk .

Thus the effect of increasing xj in a proportional hazards model can be summarized as follows.

1. If βj > 0 then S(t) will be decreased as xj increases, as will E(T ).

2. If βj < 0 then S(t) will be increased as xj increases, as will E(T ).

Note: The signs of the βj parameters will be opposite of what they are in a equivalent accelerated failure
time model.

Example: Consider again a proportional hazards model for the motors data.
library(flexsurv)
m <- flexsurvreg(Surv(time, cens) ~ temp, dist = "weibullPH", data = MASS::motors)
print(m)

Call:
flexsurvreg(formula = Surv(time, cens) ~ temp, data = MASS::motors,

dist = "weibullPH")

Estimates:
data mean est L95% U95% se exp(est) L95% U95%

shape NA 2.99e+00 1.96e+00 4.56e+00 6.42e-01 NA NA NA
scale NA 6.34e-22 1.46e-30 2.76e-13 6.43e-21 NA NA NA
temp 1.82e+02 1.36e-01 7.92e-02 1.92e-01 2.87e-02 1.15e+00 1.08e+00 1.21e+00

N = 40, Events: 17, Censored: 23
Total time at risk: 140654
Log-likelihood = -147, df = 3
AIC = 301
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Semi-Parametric (Cox) Proportional Hazards Model
A proportional hazards model assumes

hi(t) = h0(t)eβ1xi1eβ2xi2 · · · eβkxik ,

where again h0(t) is the “baseline” proportional hazards function. The functional form of h0(t) and thus hi(t)
depends on the distribution of Ti.

1. A parametric proportional hazards model assumes a particular distribution and functional form of h0(t).

2. The semi-parametric proportional hazards model does not assume a particular distribution or functional
form for h0(t).

The marginal or partial likelihood function permits maximum likelihood estimation of β1, β2, . . . , βk without
assuming a particular distribution. It is based only on the rank order of the times.

Comments about semi-parametric proportional hazards models.

1. Right-censoring can be easily handled with this model. But other types of censoring require additional
assumptions.

2. Estimation of hazard and survival functions relies on a semi-parametric approach.

3. Stratification can be used when hazard functions are proportional within but not between strata.

The function coxph from the survival package will estimate a Cox proportional hazards model.

Example: Consider a Cox proportional hazards model for the motors data.
library(survival) # for coxph function
m <- coxph(Surv(time, cens) ~ temp, data = MASS::motors)
summary(m)

Call:
coxph(formula = Surv(time, cens) ~ temp, data = MASS::motors)

n= 40, number of events= 17

coef exp(coef) se(coef) z Pr(>|z|)
temp 0.0919 1.0962 0.0274 3.36 0.00079 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
temp 1.1 0.912 1.04 1.16

Concordance= 0.84 (se = 0.035 )
Likelihood ratio test= 25.6 on 1 df, p=4e-07
Wald test = 11.3 on 1 df, p=8e-04
Score (logrank) test = 22.7 on 1 df, p=2e-06

We can plot estimated survival functions from a coxph model object.
d <- data.frame(temp = c(150,170,190,220))

# plot estimated survival functions
plot(survfit(m, newdata = d), bty = "n", lty = 1:4, xlab = "Time (Hours)", ylab = "S(t)")

# add a legend
legend(6500, 0.7, legend = c("150C", "170C", "190C", "220C"), lty = 1:4, bty = "n")
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# add a title
title("Estimated Survival Functions")
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A common non-parametric estimator of a survival function is the Kaplan-Meier estimator, but it is largely
limited to cases where you have a categorical explanatory variable with multiple times observed per category.

Discrete Survival Time Models
Discrete survival time models treat time-to-event as a discrete random variable rather than a continuous
random variable. This is done for one of two reasons.

1. Time is actually continuous, but we treat it as discrete for convenience/simplicity, or because the
observations are interval-censored (with common intervals, e.g., week, month, year).

2. The “time” is actually a count of “attempts” of an event (e.g., number of cycles until pregnancy, number
of times to take a test until it is passed, number of times a machine is run until it fails).

For discrete time, the probability density, survival, and hazard functions are analogous to what they are for
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continuous time, but simpler because all of them give probabilities.

1. The probability mass function is f(t) = P (T = t). This gives the probability that the event will happen
at time t.

2. The survival function is, as before, S(t) = P (T ≥ t). This gives the probability that the event will
happen at time t or later.

3. The hazard function is h(t) = P (T = t|T ≥ t). This gives the probability that the event will happen at
time t given that it has not yet happened (i.e., the probability that it will happen at time t given that
the unit has “survived” to that point).

It is important to not confused the probability mass function which gives the probability that the event will
happen at time t, versus the hazard function which gives the probability that the event will happen at time t
given that it has not yet happened.

Example: Suppose I have a fair ten-sided die. Let t be the number of rolls until I get a one. The figures
below show the probability mass and hazard function.
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Technical Details: Note that f(t), S(t), and h(t) are related because h(t) = f(t)/S(t). Also we can define
f(t) entirely in terms of h(t). Consider that if a unit survives to time t, the probability that it will not survive
past time t is

h(t) = P (T = t|T ≥ t),

and the probability that it will survive past time t is

1 − h(t) = 1 − P (T = t|T ≥ t) = P (T > t|T ≥ t).

So we can write f(t) in terms of h(t) as follows.
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1. For observations that are not right-censored at time t,

f(1) = h(1),
f(2) = [1 − h(1)]h(2),
f(3) = [1 − h(1)][1 − h(2)]h(3),
f(4) = [1 − h(1)][1 − h(2)][1 − h(3)]h(4),
f(5) = [1 − h(1)][1 − h(2)][1 − h(3)][1 − h(4)]h(5),

and so on. In general for non-censored discrete times

f(t) =
{

h(t), if t = 1,

h(t)
∏t−1

j=1[1 − h(j)], if t > 1,

Note that 1 − h(t) = 1 − P (T = t|T ≥ t) = P (T > t|T ≥ t).

2. For observations that are right-censored at time t,

f(1) = [1 − h(1)],
f(2) = [1 − h(1)][1 − h(2)],
f(3) = [1 − h(1)][1 − h(2)][1 − h(3)],
f(4) = [1 − h(1)][1 − h(2)][1 − h(3)][1 − h(4)],
f(5) = [1 − h(1)][1 − h(2)][1 − h(3)][1 − h(4)][1 − h(5)],

and so on. In general for right-censored discrete times

f(t) =
t∏

j=1
[1 − h(j)].

Note that 1 − h(t) = 1 − P (T = t|T ≥ t) = P (T > t|T ≥ t).

Discrete Survival Models as Binary Regression Models

Discrete survival time models can be expressed as binary regression models. We can model the probability
that a unit will not survive past time t given that it survived to time t, or we can model the probability that
it will survive past time t given that it survived to time t.

Suppose we code time-till-event with positive integers. For every T we define a set of binary responses such
that if T = t then we have t binary responses, Y1, Y2, . . . , Yt, such that

Yt =
{

1, if the event occurs at time t (i.e., T = t),
0, if the event occurs after time t (i.e., T > t).

Note that if T is right-censored then we let T = t where t is the last time we know the event had not failed,
but Yt = 0.

Example: The observed event times are T = t where t = 1, 2, 3, 4, or 5. Then we define Y1, Y2, . . . , Y5 as
follows.

Example: T is censored such that T > t where t = 1, 2, 3, 4, or 5. Then we define Y1, Y2, . . . , Y5 as follows.

Not: If time is discrete due to interval-censoring the maximum possible time does not need a binary variable.

Technical Details: The distribution of T can be stated in terms of the Yt. It follows that h(t) = P (Yt = 1)
and 1 − h(t) = 1 − P (Yt = 1) = P (Yt = 0), so if T is not censored then

f(t) =
{

P (Y1 = 1), if t = 1,

P (Yt = 1)
∏t−1

j=1 P (Yt = 0), if t > 1,
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t Y1 Y2 Y3 Y4 Y5

1 1
2 0 1
3 0 0 1
4 0 0 0 1
5 0 0 0 0 1

t Y1 Y2 Y3 Y4 Y5

1 0
2 0 0
3 0 0 0
4 0 0 0 0
5 0 0 0 0 0

and if T is censored such that T > t then

f(t) =
t∏

j=1
P (Yt = 0).

TLDR: Many discrete time survival models can be estimated as binary regression models (e.g., logistic
regression) where the response variable is an indicator variable for if the event happened at a given time.

Example: Consider the following data from a study comparing mothers who smoke to those who do not
with respect to the number of menstrual cycles until pregnancy.
library(trtools) # for cycles data
p <- ggplot(cycles, aes(x = cycles, y = after_stat(density))) +

facet_wrap(~ mother) +
geom_histogram(binwidth = 1, center = 1,

color = "black", fill = grey(0.85)) +
scale_x_continuous(breaks = 1:13, labels = c(1:12,"13+")) +
labs(x = "Number of Cycles Until Pregnancy",

y = "Relative Frequency") + theme_minimal()
plot(p)
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Note that for a relative frequency histogram, use y = after_stat(density*w) where w is a number indicating
the bin width (which is one in this case).

It is important to note that all reported values of 13 cycles are actually right-censored and so represent
13 or more cycles. The observed censoring times are between 1 and 12 cycles, with all recorded cycles of
13 representing right-censored observations only known to be more than 12 cycles. We need to create an
indicator variable for observed times and to change values of 13 to 12 since that was the last observed time.
cycles$status <- ifelse(cycles$cycles == 13, 0, 1)
cycles$cycles <- ifelse(cycles$cycles == 13, 12, cycles$cycles)

Here are some mothers of observed (i.e., not censored) times.

cycles mother status
102 1 nonsmoker 1
216 1 nonsmoker 1
358 2 nonsmoker 1
437 3 nonsmoker 1
449 3 nonsmoker 1

Here are some mothers with censored times.

cycles mother status
576 12 nonsmoker 0
577 12 nonsmoker 0
581 12 nonsmoker 0
582 12 nonsmoker 0
584 12 nonsmoker 0
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The function dsurvbin from the trtools package helps convert a data frame with a discrete time-till-event
into a format with binary variables as discussed above (a similar function is available in the discSurv
package).
cycles.bin <- dsurvbin(cycles, y = "cycles", event = "status")

So depending on the number of cycles up to twelve indicator variable are created for each observational unit.
For example, here is a mother where pregnancy occurred after three cycles.

cycles mother status unit t y
541 3 smoker 1 46 1 0
542 3 smoker 1 46 2 0
543 3 smoker 1 46 3 1

And here is a mother where pregnancy occurred after five cycles.

cycles mother status unit t y
793 5 smoker 1 67 1 0
794 5 smoker 1 67 2 0
795 5 smoker 1 67 3 0
796 5 smoker 1 67 4 0
797 5 smoker 1 67 5 1

And here is a mother where pregnancy occurred after twelve cycles.

cycles mother status unit t y
1081 12 smoker 1 91 1 0
1082 12 smoker 1 91 2 0
1083 12 smoker 1 91 3 0
1084 12 smoker 1 91 4 0
1085 12 smoker 1 91 5 0
1086 12 smoker 1 91 6 0
1087 12 smoker 1 91 7 0
1088 12 smoker 1 91 8 0
1089 12 smoker 1 91 9 0
1090 12 smoker 1 91 10 0
1091 12 smoker 1 91 11 0
1092 12 smoker 1 91 12 1

But for comparison, here is a mother where pregnancy was right-censored and is only known to have occurred
(if it occurred) after twelve cycles.

cycles mother status unit t y
1117 12 smoker 0 94 1 0
1118 12 smoker 0 94 2 0
1119 12 smoker 0 94 3 0
1120 12 smoker 0 94 4 0
1121 12 smoker 0 94 5 0
1122 12 smoker 0 94 6 0
1123 12 smoker 0 94 7 0
1124 12 smoker 0 94 8 0
1125 12 smoker 0 94 9 0
1126 12 smoker 0 94 10 0
1127 12 smoker 0 94 11 0
1128 12 smoker 0 94 12 0

Note: Here’s a way to rearrange the data using tools from the dplyr package.
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cycles.bin <- trtools::cycles %>%
mutate(status = ifelse(cycles == 13, 0, 1)) %>%
mutate(cycles = ifelse(cycles == 13, 12, cycles)) %>%
mutate(unit = 1:n()) %>% uncount(cycles, .remove = FALSE) %>%
arrange(unit) %>% group_by(unit) %>% mutate(t = 1:n()) %>%
mutate(y = ifelse(t < cycles | status == 0, 0, 1))

Now consider a logistic regression model for the binary response variable y. This model effectively estimates
the hazard rate (i.e., probability of pregnancy) under given circumstances (e.g., whether or not the mother is
a smoker).
m <- glm(y ~ mother, family = binomial, data = cycles.bin)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) -1.242 0.118 -10.55 5.08e-26 -1.478 -1.016
mothernonsmoker 0.541 0.130 4.15 3.31e-05 0.289 0.801

Odds ratio for smoking.
exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 0.289 0.228 0.362
mothernonsmoker 1.718 1.336 2.228
trtools::contrast(m, tf = exp,

a = list(mother = "nonsmoker"),
b = list(mother = "smoker"))

estimate lower upper
1.72 1.33 2.22

trtools::contrast(m, tf = exp,
a = list(mother = "smoker"),
b = list(mother = "nonsmoker"))

estimate lower upper
0.582 0.451 0.751

Estimated probabilities of pregnancy on any given cycles.
trtools::contrast(m, a = list(mother = c("nonsmoker","smoker")),

tf = plogis, cnames = c("nonsmoker","smoker"))

estimate lower upper
nonsmoker 0.332 0.308 0.357
smoker 0.224 0.187 0.267

Note that with this model the hazard function is “flat” — i.e., the probability of pregnancy each cycle (given
pregnancy has not yet happened) is the same.1 This is reasonable here, but in other cases we might expect
there to be time-varying effects (e.g., season or temperature in animals), which can be handled easily since
we can let an explanatory variable vary over time (recorded as t in the data frame). Although over a longer
time span we might consider a model where the hazard function decreases due to age.

Example: Consider the following data on the grade when adolescent males first experience sexual intercourse.
1In such cases we say that the number of trials until something happens has a geometric distribution.
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firstsex <- read.table("https://stats.idre.ucla.edu/stat/examples/alda/firstsex.csv",
sep = ",", header = TRUE)

head(firstsex)

id time censor pt pas
1 1 9 0 0 1.979
2 2 12 1 1 -0.545
3 3 12 1 0 -1.405
4 5 12 0 1 0.974
5 6 11 0 0 -0.636
6 7 9 0 1 -0.243

There is right-censoring (i.e., boys who did not experience sex by the 12th grade). We need a proper status
variable for that.
firstsex$status <- ifelse(firstsex$censor == 1, 0, 1)

One key explanatory variable is whether or not a boy experienced a “parenting transition” prior to the 7th
grade. The variable is pt but is a binary variable. We’ll convert it to a factor with clear level labels.
firstsex$transition <- factor(firstsex$pt,

levels = c(0,1), labels = c("no","yes"))

We can verify that these changes were done correctly.
head(firstsex)

id time censor pt pas status transition
1 1 9 0 0 1.979 1 no
2 2 12 1 1 -0.545 0 yes
3 3 12 1 0 -1.405 0 no
4 5 12 0 1 0.974 1 yes
5 6 11 0 0 -0.636 1 no
6 7 9 0 1 -0.243 1 yes

Now we need to transform the data to create indicator variables for whether or not a boy experienced sex for
the first time in a given grade.
library(trtools)
firstsex <- dsurvbin(firstsex, "time", "status")
head(firstsex)

id time censor pt pas status transition unit t y
1 1 9 0 0 1.979 1 no 1 7 0
2 1 9 0 0 1.979 1 no 1 8 0
3 1 9 0 0 1.979 1 no 1 9 1
7 2 12 1 1 -0.545 0 yes 2 7 0
8 2 12 1 1 -0.545 0 yes 2 8 0
9 2 12 1 1 -0.545 0 yes 2 9 0

Here is a boy who first had sex in the 9th grade.
subset(firstsex, id == 1)

id time censor pt pas status transition unit t y
1 1 9 0 0 1.98 1 no 1 7 0
2 1 9 0 0 1.98 1 no 1 8 0
3 1 9 0 0 1.98 1 no 1 9 1

Here is a boy who first had sex in the 12th grade.
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subset(firstsex, id == 5)

id time censor pt pas status transition unit t y
19 5 12 0 1 0.974 1 yes 4 7 0
20 5 12 0 1 0.974 1 yes 4 8 0
21 5 12 0 1 0.974 1 yes 4 9 0
22 5 12 0 1 0.974 1 yes 4 10 0
23 5 12 0 1 0.974 1 yes 4 11 0
24 5 12 0 1 0.974 1 yes 4 12 1

Here is a boy who did not first have sex by the 12th grade (but may have first had sex later — i.e.,
right-censored).
subset(firstsex, id == 3)

id time censor pt pas status transition unit t y
13 3 12 1 0 -1.4 0 no 3 7 0
14 3 12 1 0 -1.4 0 no 3 8 0
15 3 12 1 0 -1.4 0 no 3 9 0
16 3 12 1 0 -1.4 0 no 3 10 0
17 3 12 1 0 -1.4 0 no 3 11 0
18 3 12 1 0 -1.4 0 no 3 12 0

First consider a model for a flat/constant hazard function h(t) = P (T = t|T ≥ t), where here T is grade.
However we will let the hazard rate depend on whether or not there was a parenting transition.
m <- glm(y ~ transition, family = binomial, data = firstsex)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.149 0.171 -12.54 4.55e-36
transitionyes 0.713 0.208 3.42 6.23e-04
d <- expand.grid(t = c("7","8","9","10","11","12"), transition = c("no","yes"))
d$yhat <- predict(m, newdata = d, type = "response")

library(ggrepel) # for geom_label_repel
p <- ggplot(d, aes(x = t, y = yhat, color = transition)) + theme_classic() +

geom_point() + geom_line(aes(group = transition)) + ylim(0, 0.5) +
geom_label_repel(aes(label = round(yhat,2)),
box.padding = 0.75, show.legend = FALSE) +

labs(x = "Grade", y = "Hazard Rate", color = "Parenting\nTransition") +
theme(legend.position = "inside", legend.position.inside = c(0.2,0.8))

plot(p)
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# odds ratio
contrast(m, tf = exp,

a = list(transition = "yes", t = c("7","8","9","10","11","12")),
b = list(transition = "no", t = c("7","8","9","10","11","12")),
cnames = paste("Grade", 7:12))

estimate lower upper
Grade 7 2.04 1.36 3.07
Grade 8 2.04 1.36 3.07
Grade 9 2.04 1.36 3.07
Grade 10 2.04 1.36 3.07
Grade 11 2.04 1.36 3.07
Grade 12 2.04 1.36 3.07

Now consider a model where the hazard rate is not necessarily constant over grades. This can be done by
including an “effect” for time (i.e., grade).
m <- glm(y ~ transition + t, family = binomial, data = firstsex)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.994 0.318 -9.43 4.07e-21
transitionyes 0.874 0.217 4.02 5.86e-05
t8 -0.706 0.473 -1.49 1.36e-01
t9 0.713 0.352 2.03 4.27e-02
t10 1.172 0.345 3.39 6.89e-04
t11 1.340 0.359 3.74 1.88e-04
t12 1.815 0.367 4.94 7.78e-07
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d <- expand.grid(t = c("7","8","9","10","11","12"), transition = c("no","yes"))
d$yhat <- predict(m, newdata = d, type = "response")

p <- ggplot(d, aes(x = t, y = yhat, color = transition)) + theme_classic() +
geom_point() + geom_line(aes(group = transition)) + ylim(0, 0.5) +
geom_label_repel(aes(label = round(yhat,2)),

box.padding = 0.75, show.legend = FALSE) +
labs(x = "Grade", y = "Hazard Rate", color = "Parenting\nTransition") +
theme(legend.position = "inside", legend.position.inside = c(0.2,0.8))

plot(p)
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# odds ratio
contrast(m, tf = exp,

a = list(transition = "yes", t = c("7","8","9","10","11","12")),
b = list(transition = "no", t = c("7","8","9","10","11","12")),
cnames = paste("Grade", 7:12))

estimate lower upper
Grade 7 2.4 1.56 3.67
Grade 8 2.4 1.56 3.67
Grade 9 2.4 1.56 3.67
Grade 10 2.4 1.56 3.67
Grade 11 2.4 1.56 3.67
Grade 12 2.4 1.56 3.67
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