
Monday, April 7

Probability Density, Survival, and Hazard Functions
Let T be a continuous random variable that is time-till-event. Four related functions are used to describe the
distribution of T .

The Probability Density Function

The probability density function of T is

f(t) = lim
δt→0

P (t ≤ T < t + δt)
δt

.

If δ is relatively small then P (t ≤ T < t + δt) ≈ f(t)δt and so f(t) ≈ P (t ≤ T < t + δt)/(δt) and thus f(t)
is approximately proportional to the probability that T is between t and t + δt. So f(t) is approximately
proportional to the probability that the event will happen “near” t.

For the distribution below, the probability that T is approximately 40 (say, between 39 and 41) equals the
area under the curve and between 39 and 41. This probability is approximated by the rectangle, which has
area wf(40), where w = 2 is the width of the rectangle and f(40) is the height of the rectangle. So the
probability that T is approximately 40 is proportional to f(40).
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The Survival Function

The survival function is
S(t) = P (T ≥ t).
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It equals the area under f(t) and between t and ∞. The area under S(t) equals E(T ) if S(0) = 1 and
S(∞) = 1.
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S(t) =

∫ ∞

t

f(z)dz.
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The Hazard Function

The hazard function is
h(t) = lim

δt→0

P (t ≤ T < t + δt|T ≥ t)
δt

= f(t)
S(t) .

If δ is relatively small then h(t) is approximately proportional to the probability that t ≤ T < t + δt given
survival up to t — i.e., T ≥ t. So h(t) is approximately proportional to the probability of the event happening
at near time t if it has not yet happened.
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Distributions and Hazard Functions
A wide variety of distributions can be used for parametric survival models such as AFT models. Below is a
list of just some of those distributions. One of the more noticeable differences between them is the shape of
their hazard functions.

1. Log-normal. The distribution of log(Ti) is normal. Single-peaked hazard function. Known as lognormal
by survreg and flexsurvreg, and also lnorm by flexsurvreg.

2. Log-logistic. The distribution of log(Ti) is logistic. Single-peaked or decreasing hazard function. Known
as loglogistic by survreg and flexsurvreg and llogis by flexsurvreg.

3. Gamma. Monotonic or flat hazard function. Known as gamma to flexsurvreg.

4. Weibull. Monotonic or flat hazard function. Known as weibull to both survreg and flexsurvreg.

5. Exponential. Flat hazard function (“memoryless”). Known as exp to flexsurvreg but also as a special
case of weibull if scale = 1 with survreg.

6. Gompertz. Increasing hazard function. Known as gompertz to flexsurvreg.

7. Generalized gamma. Monotonic, single-peaked, and “bathtub” hazard functions. The exponential,
Weibull, gamma, and log-normal are special cases. Known as gengamma to flexsurvreg.

8. Generalized F . Single-peaked or decreasing. Known as genf to flexsurvreg.
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Estimating and Plotting Hazard Functions
The summary function can be used to estimate the hazard function based on a flexsurvreg model object.

Example: Consider data from an experiment on the effects of sexual activity on the lifespan of the male
fruitfly. Thorax length was used as a covariate.
library(faraway)
p <- ggplot(fruitfly, aes(x = thorax, y = longevity)) +

geom_point() + facet_wrap(~ activity, ncol = 5) +
labs(x = "Thorax Length (mm)", y = "Longevity (days)") +
theme_minimal()

plot(p)
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m <- flexsurvreg(Surv(longevity) ~ activity + thorax,
data = fruitfly, dist = "gamma")

d <- data.frame(activity = unique(fruitfly$activity), thorax = 0.8)
d <- summary(m, newdata = d, t = seq(0, 100, length = 100),
type = "hazard", tidy = TRUE)

head(d)

time est lcl ucl activity thorax
1 0.00 0.00e+00 0.00e+00 0.00e+00 many 0.8
2 1.01 1.22e-39 3.11e-50 3.53e-31 many 0.8
3 2.02 1.90e-31 1.02e-39 9.03e-25 many 0.8
4 3.03 9.68e-27 1.24e-33 3.98e-21 many 0.8
5 4.04 1.84e-23 2.15e-29 1.36e-18 many 0.8
6 5.05 5.81e-21 3.02e-26 1.16e-16 many 0.8
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p <- ggplot(d, aes(x = time, y = est, color = activity)) +
geom_line() + theme_minimal() +
labs(x = "Days", y = "h(t)", color = "Condition", title = "Hazard Functions")

plot(p)
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d <- expand.grid(activity = unique(fruitfly$activity), thorax = c(0.7,0.8,0.9))
d <- summary(m, newdata = d, t = seq(0, 100, length = 100),

type = "hazard", tidy = TRUE)

p <- ggplot(d, aes(x = time, y = est, color = activity)) +
geom_line() + theme_minimal() +
labs(x = "Days", y = "h(t)", color = "Condition", title = "Hazard Functions") +
facet_wrap(~ thorax)

plot(p)
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For comparison here are the survival functions.
d <- expand.grid(activity = unique(fruitfly$activity), thorax = c(0.7,0.8,0.9))
d <- summary(m, newdata = d, t = seq(0, 100, length = 100),

type = "survival", tidy = TRUE)

p <- ggplot(d, aes(x = time, y = est, color = activity)) +
geom_line() + theme_minimal() +
labs(x = "Days", y = "S(t)", color = "Condition", title = "Survival Functions") +
facet_wrap(~ thorax)

plot(p)
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And here are the probability density functions.
d <- expand.grid(activity = unique(fruitfly$activity), thorax = c(0.7,0.8,0.9))
d <- summary(m, newdata = d, t = seq(0, 100, length = 100),

fn = function(t, ...) dgamma(t, ...), tidy = TRUE)

p <- ggplot(d, aes(x = time, y = est, color = activity)) +
geom_line() + theme_minimal() +
labs(x = "Days", y = "f(t)", color = "Condition", title = "Density Functions") +
facet_wrap(~ thorax)

plot(p)
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Note that we can adapt this to other distributions by adding a d to the beginning of the distribution name
recognized by flexsurvreg. This include log-normal (dlnorm), log-logistic (dllogis), gamma (dgamma),
Weibull (dweibull), exponential (dexp), Gompertz (dgompertz), generalized gamma (dgengamma), and
generalized F (dgenf).

Finally we can also plot the expected survival time. This is analogous to using predict with type = response
in a GLM.
d <- expand.grid(activity = unique(fruitfly$activity),

thorax = seq(0.6, 1.0, length = 100))
d <- summary(m, newdata = d, type = "mean", tidy = TRUE)
head(d)

est lcl ucl activity thorax
1 36.0 31.9 40.3 many 0.600
2 33.1 29.3 37.6 isolated 0.600
3 35.0 30.7 39.7 one 0.600
4 29.5 25.9 33.3 low 0.600
5 21.9 19.4 24.5 high 0.600
6 36.4 32.3 40.7 many 0.604

p <- ggplot(d, aes(x = thorax, y = est, color = activity)) +
geom_line() + theme_minimal() +
labs(x = "Thorax Length (mm)", y = "E(T)", color = "Condition",

title = "Expected Survival Time")
plot(p)
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p <- ggplot(fruitfly, aes(x = thorax, y = longevity)) +
geom_point() + facet_wrap(~ activity, ncol = 5) +
labs(x = "Thorax Length (mm)", y = "Longevity (days)",
title = "Observed and Expected Survival Time") +

theme_minimal() + geom_line(aes(y = est), data = d)
plot(p)
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Example: Consider an AFT model for the leukemia data. Note that patients are either of remission (not
censored) or still in remission (right-censored).
library(survival)
leukemia$status <- factor(leukemia$status, labels = c("in","out"))

m <- flexsurvreg(Surv(time, status == "out") ~ x, dist = "weibull", data = leukemia)

# create plot of hazard functions
d <- data.frame(x = c("Maintained","Nonmaintained"))
d <- summary(m, newdata = d, t = seq(1, 200, length = 1000),

type = "hazard", tidy = TRUE)

p <- ggplot(d, aes(x = time, y = est)) +
geom_line(aes(linetype = x)) + theme_minimal() +
labs(x = "Time", y = "h(t)", linetype = "Extended",

title = "Hazard Functions") +
theme(legend.position = "inside", legend.position.inside = c(0.7, 0.5))

p.h <- p

# create plot of survival functions
d <- data.frame(x = c("Maintained","Nonmaintained"))
d <- summary(m, newdata = d, t = seq(1, 200, length = 1000),

type = "survival", tidy = TRUE)

p <- ggplot(d, aes(x = time, y = est)) +
geom_line(aes(linetype = x)) + theme_minimal() +
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labs(x = "Time", y = "S(t)", linetype = "Extended",
title = "Survival Functions") +

theme(legend.position = "inside", legend.position.inside = c(0.7, 0.7))
p.s <- p

# create plot of probability density functions
d <- data.frame(x = c("Maintained","Nonmaintained"))
d <- summary(m, newdata = d, t = seq(1, 200, length = 1000),

fn = function(t, ...) dweibull(t, ...), tidy = TRUE)

p <- ggplot(d, aes(x = time, y = est)) +
geom_line(aes(linetype = x)) + theme_minimal() +
labs(x = "Time", y = "f(t)", linetype = "Extended",

title = "Probability Density Functions") +
theme(legend.position = "inside", legend.position.inside = c(0.7, 0.7))

p.d <- p

# put the plots together into one plot
cowplot::plot_grid(p.h, p.s, p.d, ncol = 3)
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We can also plot the raw data with the estimated expected survival times and confidence intervals for the
estimated expected survival time.
d <- summary(m, newdata = data.frame(x = c("Maintained","Nonmaintained")),
type = "mean", tidy = TRUE)

d

est lcl ucl x
1 56.6 33.4 105.1 Maintained
2 22.3 14.2 36.4 Nonmaintained

p <- ggplot(leukemia, aes(x = x, y = time)) +
geom_dotplot(aes(fill = status), stackdir = "center", binaxis = "y",

binwidth = 1, dotsize = 2, alpha = 0.5) + coord_flip() +
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scale_fill_manual(name = "Status", values = c("white","black")) +
geom_pointrange(aes(y = est, ymin = lcl, ymax = ucl),

shape = 3, data = d) +
labs(x = "Maintained", y = "Remission Time (weeks)") +
theme_classic() +
theme(legend.position = "inside", legend.position.inside = c(0.8, 0.8))

plot(p)
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A very useful feature of the flexsurv package is that a user can program their own distribution for use with
the functions therein.

Proportional Hazards Models
Let h0(t) be the “baseline” hazard function (i.e., the hazard function when all xj = 0). A proportional hazards
model has the form

hi(t) = h0(t)eβ1xi1eβ2xi2 · · · eβkxik ,

so that hi(t) ∝ eβ1xi1eβ2xi2 · · · eβkxik . Thus increasing xj by one changes the hazard function by a factor of
eβj . This is the hazard ratio. For example, the hazard ratio for x1 is

h0(t)eβ1(x1+1)eβ2x2 · · · eβkxk

h0(t)eβ1x1eβ2x2 · · · eβkxk
= eβ1 ,

since eβ1(x1+1) = eβ1x1eβ1 .

Parametric Proportional Hazards Models
AFT models with a Weibull distribution (or exponential, which is a special case of the Weibull distribution)
are also proportional hazards models. Consider the AFT model,

log Ti = β0 + β1xi1 + β2xi2 + · · · + βkxik + σϵi,

and the proportional hazards model

hi(t) = h0(t) exp(β∗
1xi1 + β∗

2xi2 + · · · + β∗
kxik),

where in both cases Ti has a Weibull distribution. It can be shown that the models are equivalent with

β∗
j = −βj/σ.
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The hazard ratios are eβ∗
j .

An AFT model with a Weibull distribution is the only AFT model that is also a proportional hazards model.
Other proportional hazards models exist, but none of the them are AFT models.

Example: We can estimate a Weibull proportional hazards model for the leukemia data using survreg as
follows.
m <- survreg(Surv(time, status == "dead") ~ x, dist = "weibull", data = leukemia)
summary(m)

Call:
survreg(formula = Surv(time, status == "dead") ~ x, data = leukemia,

dist = "weibull")
Value Std. Error z p

(Intercept) NA 0.0 NA NA
xNonmaintained NA 0.0 NA NA
Log(scale) -30.9 0.0 -Inf <2e-16

Scale= 3.89e-14

Weibull distribution
Loglik(model)= -2400 Loglik(intercept only)= 0

Chisq= -4800 on 1 degrees of freedom, p= 1
Number of Newton-Raphson Iterations: 1
n= 23

The estimated hazard ratio is eβ̂∗
1 where β̂∗

1 ≈ NA/0 ≈ NA so eβ̂∗
1 ≈ NA. Thus

hn(t)
hy(t) = eβ∗

1 ⇔ hn(t) = eβ∗
1 hy(t),

where we estimate the hazard ratio eβ∗
1 to be NA. This conversion can be done using the ConvertWeibull

function from the SurvRegCensCov package.
library(SurvRegCensCov)
ConvertWeibull(m)

$vars
Estimate SE

lambda NA NA
gamma 2.57e+13 0
xNonmaintained NA NA

$HR
HR LB UB

xNonmaintained NA NA NA

$ETR
ETR LB UB

xNonmaintained NA NA NA

Another approach is to use dist = "weibullPH" with flexsurvreg which uses a different parameterization
of the Weibull distribution so that applying the exponential function to the parameters gives hazard ratios.
m <- flexsurvreg(Surv(time, status == "out") ~ x, dist = "weibullPH", data = leukemia)
print(m)
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Call:
flexsurvreg(formula = Surv(time, status == "out") ~ x, data = leukemia,

dist = "weibullPH")

Estimates:
data mean est L95% U95% se exp(est) L95% U95%

shape NA 1.264295 0.891546 1.792889 0.225328 NA NA NA
scale NA 0.005544 0.000739 0.041565 0.005698 NA NA NA
xNonmaintained 0.521739 1.174962 0.149832 2.200092 0.523035 3.238021 1.161640 9.025845

N = 23, Events: 18, Censored: 5
Total time at risk: 678
Log-likelihood = -80.5, df = 3
AIC = 167

The proportionality can be seen when plotting the hazard functions.
d <- data.frame(x = c("Maintained","Nonmaintained"))
d <- summary(m, newdata = d, t = seq(1, 200, length = 1000),

type = "hazard", tidy = TRUE)

p <- ggplot(d, aes(x = time, y = est)) +
geom_line(aes(linetype = x)) + theme_minimal() +
labs(x = "Time", y = "h(t)", linetype = "Extended", title = "Hazard Functions") +
theme(legend.position = "inside", legend.position.inside = c(0.8, 0.5))

plot(p)
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Example: Consider a Weibull proportional hazards model for the motors data.
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m <- flexsurvreg(Surv(time, cens) ~ temp, data = MASS::motors, dist = "weibullPH")
print(m)

Call:
flexsurvreg(formula = Surv(time, cens) ~ temp, data = MASS::motors,

dist = "weibullPH")

Estimates:
data mean est L95% U95% se exp(est) L95% U95%

shape NA 2.99e+00 1.96e+00 4.56e+00 6.42e-01 NA NA NA
scale NA 6.34e-22 1.46e-30 2.76e-13 6.43e-21 NA NA NA
temp 1.82e+02 1.36e-01 7.92e-02 1.92e-01 2.87e-02 1.15e+00 1.08e+00 1.21e+00

N = 40, Events: 17, Censored: 23
Total time at risk: 140654
Log-likelihood = -147, df = 3
AIC = 301

Here we have that
hx+1(t) = eβ∗

1 hx(t),

where hx(t) and hx+1(t) represent the hazard functions at temperatures of x and x + 1, respectively. The
estimated hazard ratio is eβ̂∗

1 = 1.15.
d <- summary(m, newdata = data.frame(temp = seq(110, 150, by = 10)),

t = seq(0, 8000, length = 1000), type = "hazard", tidy = TRUE, ci = FALSE)

p <- ggplot(d, aes(x = time, y = est, color = factor(temp))) +
geom_line() + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.2, 0.6)) +
labs(x = "Hours", y = "h(t)", color = "Temperature", title = "Hazard Functions")

plot(p)
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