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Censoring Specification
Without much loss of generality we will limit the discussion here to right-censoring. We define an indicator
variable Di such that

Di =
{

1, if the i-th observation is not censored,

0, if the i-th observation is censored.

The variable Di can be viewed as another response variable which depends on the actual time to event, Ti, as
well as whatever is responsible for the censoring. In what follows we will let ti and di denote observed values
of Ti and Di respectively.

Let ti be the actual time-till-event if di = 1, and the lower-bound on the time-till-event if di = 0 so that the
actual time-till-event is greater than or equal to ti. Under certain assumptions about how censoring occurs,
the likelihood function is

L =
n∏

i=1
f(ti)diP (Ti ≥ ti)1−di .

where f(ti) is the probability density function of Ti, and P (Ti ≥ ti) is the probability that Ti is at least ti

(this is also called the survival function). Note that

f(ti)diP (Ti ≥ ti)1−di =
{

f(ti), if di = 1 (i.e., not censored),
P (Ti ≥ ti), if di = 0 (i.e., censored),

so the indicator variable di simply selects the appropriate term for computing the likelihood of an observation
depending on whether or not it was censored.

Specification of Right-Censoring in Surv

For right-censoring, the response variable can be specified as Surv(t,d) where t is (a) the actual time to
event if there is no censoring or (b) the lower bound on time to event if the observation is right-censored, and
d is either an indicator variable (i.e., 0 or 1) or a logical variable (i.e., FALSE or TRUE) where we have d = 1
or d = TRUE if the observation is not censored.

Example: Consider an AFT model for the leukemia data.
library(survival) # for leukemia and survreg
head(leukemia) # status=1 if remission ended at that time, status=0 if right-censored

time status x censored treatment ysurv
1 9 1 Maintained no yes 9
2 13 1 Maintained no yes 13
3 13 0 Maintained yes yes 13+
4 18 1 Maintained no yes 18
5 23 1 Maintained no yes 23
6 28 0 Maintained yes yes 28+

m <- survreg(Surv(time, status) ~ x, dist = "lognormal", data = leukemia)
summary(m)$table
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Value Std. Error z p
(Intercept) 2.854 0.254 11.242 2.55e-29
xMaintained 0.724 0.380 1.905 5.68e-02
Log(scale) -0.145 0.170 -0.858 3.91e-01

Alternatively suppose we had a variable censored that told us if the observation was censored or not.
leukemia$censored <- factor(leukemia$status, labels = c("yes","no"))
head(leukemia)

time status x censored treatment ysurv
1 9 1 Maintained no yes 9
2 13 1 Maintained no yes 13
3 13 0 Maintained yes yes 13+
4 18 1 Maintained no yes 18
5 23 1 Maintained no yes 23
6 28 0 Maintained yes yes 28+

Then we specify the censoring as follows.
m <- survreg(Surv(time, censored == "no") ~ x, dist = "lognormal", data = leukemia)
summary(m)$table

Value Std. Error z p
(Intercept) 2.854 0.254 11.242 2.55e-29
xMaintained 0.724 0.380 1.905 5.68e-02
Log(scale) -0.145 0.170 -0.858 3.91e-01

It is useful to note that we can see how Surv codes the response variable for censoring. This is useful if you
want to verify that you have used Surv correctly.
leukemia$ysurv <- Surv(leukemia$time, leukemia$censored == "no")
head(leukemia)

time status x censored treatment ysurv
1 9 1 Maintained no yes 9
2 13 1 Maintained no yes 13
3 13 0 Maintained yes yes 13+
4 18 1 Maintained no yes 18
5 23 1 Maintained no yes 23
6 28 0 Maintained yes yes 28+

As before, interpretation is facilitated by applying the exponential function to the parameter estimates.
exp(cbind(coef(m),confint(m)))

2.5 % 97.5 %
(Intercept) 17.36 10.556 28.56
xMaintained 2.06 0.979 4.35

leukemia$x <- relevel(leukemia$x, ref = "Nonmaintained")
m <- survreg(Surv(time, status) ~ x, dist = "lognormal", data = leukemia)
summary(m)$table

Value Std. Error z p
(Intercept) 2.854 0.254 11.242 2.55e-29
xMaintained 0.724 0.380 1.905 5.68e-02
Log(scale) -0.145 0.170 -0.858 3.91e-01
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exp(cbind(coef(m),confint(m)))

2.5 % 97.5 %
(Intercept) 17.36 10.556 28.56
xMaintained 2.06 0.979 4.35

Interval-Censoring
Interval censoring occurs when Ti is only known to be between two numbers such that a < Ti < b where
0 ≤ a < b ≤ ∞. Note that right-censoring is a special case where b = ∞, and left-censoring is a special case
where a = 0.

Example: Consider the following data from a study of the time till cosmetic deterioration for breast cancer
patients undergoing radiotherapy alone versus radiotherapy and chemotherapy.
library(mable)
head(cosmesis, 10)

left right treat
1 45 NA RT
2 6 10 RT
3 0 7 RT
4 46 NA RT
5 46 NA RT
6 7 16 RT
7 17 NA RT
8 7 14 RT
9 37 44 RT
10 0 8 RT

Note that these data include left-censoring, interval-censoring, and right-censoring).
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Using the Surv function to specify censoring requires that lower bounds of 0 and upper bounds of ∞ be
replaced with NA.
cosmesis$left <- ifelse(cosmesis$left == 0, NA, cosmesis$left)
head(cosmesis, 10)

left right treat
1 45 NA RT
2 6 10 RT
3 NA 7 RT
4 46 NA RT
5 46 NA RT
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6 7 16 RT
7 17 NA RT
8 7 14 RT
9 37 44 RT
10 NA 8 RT

tail(cosmesis, 10)

left right treat
85 14 19 RCT
86 4 8 RCT
87 34 NA RCT
88 30 36 RCT
89 18 24 RCT
90 16 60 RCT
91 35 39 RCT
92 21 NA RCT
93 11 20 RCT
94 48 NA RCT

It is also useful to note that you can accommodate an observation that is not censored by specifying equal
left and right interval endpoints.

We can verify the censoring specification by looking at what Surv produces.
cosmesis$y <- with(cosmesis, Surv(left, right, type = "interval2"))
head(cosmesis, 10)

left right treat y
1 45 NA RT 45+
2 6 10 RT [ 6, 10]
3 NA 7 RT 7-
4 46 NA RT 46+
5 46 NA RT 46+
6 7 16 RT [ 7, 16]
7 17 NA RT 17+
8 7 14 RT [ 7, 14]
9 37 44 RT [37, 44]
10 NA 8 RT 8-

Now we can estimate an AFT model.
m <- survreg(Surv(left, right, type = "interval2") ~ treat,

dist = "lognormal", data = cosmesis)
summary(m)$table

Value Std. Error z p
(Intercept) 3.548 0.154 23.01 3.45e-117
treatRCT -0.421 0.203 -2.07 3.83e-02
Log(scale) -0.125 0.109 -1.15 2.52e-01

Applying the exponential function helps interpret the effect of the treatment.
exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 34.739 25.680 46.995
treatRCT 0.656 0.441 0.978
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Using flexsurvreg produces the same information but in one output.
library(flexsurv)
m <- flexsurvreg(Surv(left, right, type = "interval2") ~ treat,

dist = "lognormal", data = cosmesis)
print(m)

Call:
flexsurvreg(formula = Surv(left, right, type = "interval2") ~

treat, data = cosmesis, dist = "lognormal")

Estimates:
data mean est L95% U95% se exp(est) L95% U95%

meanlog NA 3.5479 3.2457 3.8500 0.1542 NA NA NA
sdlog NA 0.8821 0.7118 1.0933 0.0966 NA NA NA
treatRCT 0.5106 -0.4210 -0.8192 -0.0228 0.2032 0.6564 0.4408 0.9775

N = 94, Events: 0, Censored: 94
Total time at risk: 2089
Log-likelihood = -147, df = 3
AIC = 299

Again, it is sometimes helpful for interpretation to change the reference level when dealing with categorical
explanatory varaibles.
cosmesis$treat <- relevel(cosmesis$treat, ref = "RCT")
m <- flexsurvreg(Surv(left, right, type = "interval2") ~ treat,

dist = "lognormal", data = cosmesis)
print(m)

Call:
flexsurvreg(formula = Surv(left, right, type = "interval2") ~

treat, data = cosmesis, dist = "lognormal")

Estimates:
data mean est L95% U95% se exp(est) L95% U95%

meanlog NA 3.1269 2.8558 3.3980 0.1383 NA NA NA
sdlog NA 0.8821 0.7118 1.0933 0.0966 NA NA NA
treatRT 0.4894 0.4210 0.0228 0.8192 0.2032 1.5235 1.0230 2.2688

N = 94, Events: 0, Censored: 94
Total time at risk: 2089
Log-likelihood = -147, df = 3
AIC = 299

Survival Functions
The survival function is

S(t) = P (T ≥ t),

i.e., the probability of a survival time of at least t. It is sometimes defined as S(t) = P (T > t) rather than
S(t) = P (T ≥ t), but if time is modeled as a continuous random variable this distinction does not matter.
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Another useful property of survival functions is that the area under the survival curve equals the expected
survival time E(Ti), assuming S(0) = 0 (i.e., no events have happened at time zero) and S(∞) = 1 (i.e.,
events eventually do happen).

Survival Functions and AFT Models
Technical Explanation: Accelerated failure time models can be interpreted in terms of effects on survival
functions. Let

Tb = eβ0eβ1x1eβ2x2 · · · eβkxk eσϵ,

and let Ta = eβ1Tb as before where Ta and Tb are the survival times when the first explanatory variable
assumes values of xa and xb, respectively. The survival functions for Ta and Tb are then

Sa(t) = P (Ta ≥ t) and Sb(t) = P (Tb ≥ t),

respectively. These survival functions are related because

Sb(t) = P (Tb ≥ t) = P (eβ1Tb ≥ eβ1t) = P (Ta ≥ eβ1t) = Sa(eβ1t).

That is, Sb(t) = Sa(eβ1t) and also Sb(t/eβ1) = Sa(t). So we can say the following.
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1. The probability of survival past t at xb equals the probability of survival past eβ1t at xa.

2. The probability of survival past t at xa equals the probability of survival past t/eβ1 at xb.

It can also be shown that we can “order” the survival functions/probabilities from an AFT model because

βj > 0 ⇔ eβj > 1 ⇔ Sb(t) < Sa(t),
βj < 0 ⇔ eβj < 1 ⇔ Sb(t) > Sa(t).

Note that with an AFT model the survival functions at two different values of an explanatory variable do not
cross.

In an AFT model the explanatory variables can be viewed as “compressing” or “stretching” time which has
the effect of “horizontally compressing/stretching” the survival function. Assume Ti = eβ0eβ1xi1 · · · eβkxik eσϵi

and let Si(t) be the survival function of Ti. Then

Si(t) = P (Ti ≥ t) = P (eβ0eβ1xi1 · · · eβkxik eσϵi ≥ t) = P [eβ0eσϵi ≥ t/(eβ1xi1 · · · eβkxik )].

If all xij = 0 then Ti = eβ0eσϵi with a “baseline” survival function S0(t) = P (eβ0eσϵi ≥ t). Then

Si(t) = S0[t/(eβ1xi1 · · · eβkxik )] and Si(teβ1xi1 · · · eβkxik ) = S0(t).

So the explanatory variables effectively “horizontally” compress or stretch a (hypothetical) baseline survival
function. Also in terms of the actual times, if T0 = eβ0eσϵ represents a “baseline” survival time when all
xij = 0, the

Ti = eβ1xi1 · · · eβkxik T0,

so that again the values of the explanatory variables have the effect of “stretching” or “compressing” time
time scale.

Example: Recall the AFT model for the lifespan data where the model is

log Ti = β0 + β1xi,

where xi is an indicator variable such that xi = 1 if the species is human (so xa = 1 in the above discussion),
and xi = 0 if the species is dog (so xb = 0 in the above discussion). The estimate of β1 was β̂1 ≈ 1.946
so that eβ̂1 ≈ 7. The “baseline” survival function is the survival function for dogs, which we can write as
Sd(t). The survival function for humans is then Sh(7t). For example, we estimate that the probability that a
dog lives for 10 or more years equals the probability that a human will live for 70 or more years because
Sd(t) = Sh(7t) where t = 10. The survival function of a human is obtained by “stretching” the survival
function of a dog by a factor of 7.

If we re-parameters the model so that xi = 1 if the species is dog, then we have that β̂1 ≈ 1/7, so that
the “baseline” survival function is for humans, and we have that Sh(t) = Sd(t/7). We can also say that we
estimate that the probability that a human lives to be 35 or more equals the probability that a dog lives to be
5 or more because Sd(t/7) = Sh(t) where t = 35. The survival function of a dog is obtained by “compressing”
the survival function of a human by a factor of 1/7.
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Survival Functions for Humans and Dogs
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Example: Recall the AFT model for the motors data where the model is

log Ti = β0 + β1xi,

where xi is temperature. The estimate of β1 was β̂1 ≈ -0.047 so that eβ̂1 ≈ 0.95. Thus Sx+1(0.95t) = Sx(t)
where the subscript of x represents temperature. Increasing by one degree “compresses” the survival function
by a factor of about 0.95 (i.e., 5%).
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Survival Functions at Two Temperatures
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Plotting Estimated Survival Functions
Estimating and plotting survival functions is relatively easy using flexsurvreg objects. Here the summary
function behaves more like predict for other model objects produced by lm, nls, and glm.

Example: The estimated survival functions for the AFT model for the lifespan data can be com-
puted/plotted as follows.
library(trtools) # for lifespan data
m <- flexsurvreg(Surv(years) ~ species, dist = "lognormal", data = lifespan)

d <- data.frame(species = c("dog","human"))
d <- summary(m, newdata = d, t = seq(0, 100, by = 0.5), type = "survival", tidy = TRUE)
head(d)

time est lcl ucl species
1 0.0 1.000 1.000 1.000 dog
2 0.5 1.000 1.000 1.000 dog
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3 1.0 1.000 1.000 1.000 dog
4 1.5 0.999 0.998 0.999 dog
5 2.0 0.995 0.994 0.997 dog
6 2.5 0.987 0.983 0.990 dog

tail(d)

time est lcl ucl species
397 97.5 0.261 0.240 0.281 human
398 98.0 0.258 0.237 0.278 human
399 98.5 0.256 0.235 0.275 human
400 99.0 0.253 0.232 0.272 human
401 99.5 0.250 0.229 0.269 human
402 100.0 0.248 0.227 0.267 human

p <- ggplot(d, aes(x = time, y = est)) +
geom_line(aes(linetype = species)) +
labs(x = "Time (years)", y = "S(t)", linetype = "Species") +
theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.8))

plot(p)
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Example: Survival functions at different temperatures based on the AFT model for the motors data can be
computed/plotted as follows.
library(MASS) # for motors data frame
m <- flexsurvreg(Surv(time, cens) ~ temp, dist = "lognormal", data = motors)

11



d <- data.frame(temp = c(150,175,200))
d <- summary(m, newdata = d, t = seq(0, 10000, length = 100),
type = "survival", tidy = TRUE)

p <- ggplot(d, aes(x = time, y = est, linetype = factor(temp))) +
geom_line() + theme_minimal() +
labs(x = "Time (Hours)", y = "S(t)", linetype = "Temperature (C)")

plot(p)
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p <- ggplot(d, aes(x = time, y = est)) +
geom_line() + facet_wrap(~ temp, nrow = 1) +
geom_ribbon(aes(ymin = lcl, ymax = ucl), alpha = 0.1) +
labs(x = "Time (Hours)", y = "S(t)") + theme_minimal()

plot(p)
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