Wednesday, April 2

Survival Analysis

In survival analysis the response variable is time-till-event defined as
=17 _ 70 >

where Ti(o) is the starting time and Ti(E) is the time of the event, so that 7T; is the time-till-event.

Issues with modeling time-to-event:
1. Distribution of T; tends to be right-skewed and heteroscedastic with the variance increasing with E(T;).
2. Times may be censored. Right-censoring and interval-censoring are particularly common.

3. Time-varying covariates. Explanatory variables may change values over time.

Censored Observations

Censoring of a variable occurs when we only know that the response variable is within a set or range of values.
Common types of censoring are right-censoring, left-censoring, and interval-censoring.

Right-Censoring: We only know that 7" > ¢ for some constant c¢. This is very common in survival analysis.
It often occurs when the event has not yet happened when observations are stopped, or when the researchers
lose track of an observation unit.

Left-Censoring: We only know that T < ¢ for some constant ¢. This may happen because the event had
already happened prior to when we started observation.

Interval-Censoring: We only know that a < T < b for some constants a < b. Note that right-censoring
can be viewed as a special case where b = co and left-censoring can be viewed as a special case where a = 0.
Interval censoring occurs in survival analysis when units are only periodically observed.

Note that censoring can occur for variables other than time to event.

Example: Consider the following data from a study of the effect of normal versus extended chemotherapy
on the survival (length of remission) of patients with acute myelogenous leukemia.

library(survival)

leukemia$censored <- factor(leukemia$status, levels = c(0,1),

labels = c("yes","no")) # right-censored

leukemia

time status X censored treatment
1 9 1 Maintained no yes
2 13 1 Maintained no yes
3 13 0 Maintained yes yes
4 18 1 Maintained no yes
5 23 1 Maintained no yes
6 28 0 Maintained yes yes
7 31 1 Maintained no yes
8 34 1 Maintained no yes
9 45 0 Maintained yes yes



10 48 1 Maintained no yes
11 161 0 Maintained yes yes
12 5 1 Nonmaintained no no
13 5 1 Nonmaintained no no
14 8 1 Nonmaintained no no
15 8 1 Nonmaintained no no
16 12 1 Nonmaintained no no
17 16 0 Nonmaintained yes no
18 23 1 Nonmaintained no no
19 27 1 Nonmaintained no no
20 30 1 Nonmaintained no no
21 33 1 Nonmaintained no no
22 43 1 Nonmaintained no no
23 45 1 Nonmaintained no no
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Example: Consider the following data from a study on the effect of temperature on the operational time of
motors.

library(MASS)
head(motors) # note: cens = 0 if observation IS censored



temp time cens

1 150 8064 0
2 150 8064 0
3 150 8064 0
4 150 8064 0
5 150 8064 0
6 150 8064 0
tail (motors)
temp time cens
35 220 504 1
36 220 528 0
37 220 528 0
38 220 528 0
39 220 528 0
40 220 528 0
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Approaches to Modeling of Survival Data
Most regression models for continuous survival time can be classified as follows.

1. Parametric models. A specific distribution is assumed/specified for T;. One or more parameters of the
distribution can then be a function of one or more explanatory variables. Examples include accelerated
failure time models, parametric proportional hazards models, and parametric proportional odds models.



2. Semi-parametric models. A specific distribution is not assumed/specified for T}, but certain relationships
between the properties of the distribution and one or more explanatory variables are assumed. Examples
include semi-parametric (Cox) proportional hazards models, and semi-parametric proportional odds
models.

3. Non-parametric methods. No or negligible assumptions, but largely limited to categorical explanatory
variables.

We will also discuss discrete survival models where time is either divided into consecutive intervals of time, or
we are modeling progression through discrete stages.

Accelerated Failure Time (AFT) Model

An accelerated failure time model can be written as
logT; = By + P1xi1 + Boxio + - -+ + Brxix + o€,

where o is a scale parameter that determines the variability of log T;. This can also be written as

T, = eﬁo 651Ii1652$i2 . eﬂkwik eoci .

To complete the model specification we assume a distribution for T; (which implies a distribution for ¢;), or a
distribution for €; (which implies a distribution for Tj).

Note that a AFT is essentially a linear model where the response variable is Y; = log T; is a transformation
of T;. This is not the same as a GLM using a log link function. That would be

log E(T;) = Bo + frixi1 + Boxia + - - - + BrTik-

However in practice the two kinds of models can produce similar results, and can be interpreted similarly.

Example: Consider the following data on survival time after administration of ascorbate.

library(Stat2Data)
data(CancerSurvival)
p <- ggplot(CancerSurvival, aes(x = Organ, y = Survival)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(width = 0.25, height = 0) +
ylab("Survival Time (Days)") +
theme_classic()
plot (p)
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Suppose we assume that logT; has a normal distribution. Then we can estimate an AFT as follows.

m <- Im(log(Survival) ~ Organ, data

summary (m)

Call:

Im(formula = log(Survival) ~ Organ,

Residuals:
Min 1Q Median

3Q

-3.381 -0.661 0.102 0.821

Coefficients:
Estimate Std. Error t

(Intercept) 6.559
OrganBronchus  -1.605 0
OrganColon -0.809 0
OrganOvary -0.408 0
OrganStomach -1.591 0
Signif. codes: 0 'xxx' 0.001

0.

Max
2.046

360

.462
.462
.607
.490
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= CancerSurvival)

data =

CancerSurvival)

value Pr(>|t])

18.20
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-1.75
-0.67
-3.25
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0.00097
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Residual standard error: 1.2 on 59 degrees of freedom

Multiple R-squared: 0.225, Adjusted R-squared:

F-statistic: 4.29 on 4 and 59 DF,

p-value: 0.00412

0.
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Here the residual standard error is the estimate of o, computed as

Do (Yi — 9i)?
n—k—1

Q»
|

)

where §; = Bo + Bizit + - - + Brwin.

Other functions for estimating an AFT model are survreg from the survival package and flexsurvreg
from the flexsurv package. In both cases we can specify the distribution of T; as log-normal (a random
variable Y; has a log-normal distribution if its logarithm has a normal distribution).

library(survival)
m <- survreg(Surv(Survival) ~ Organ, dist = "lognormal", data = CancerSurvival)
summary (m)
Call:
survreg(formula = Surv(Survival) ~ Organ, data = CancerSurvival,
dist = "lognormal")
Value Std. Error z P
(Intercept) 6.5586 0.3460 18.96 < 2e-16
OrganBronchus -1.6054 0.4440 -3.62 0.00030
OrganColon -0.8095 0.4440 -1.82 0.06829
OrganOvary -0.4080 0.5824 -0.70 0.48357
OrganStomach -1.5907 0.4701 -3.38 0.00071
Log(scale) 0.1376 0.0884 1.56 0.11961
Scale= 1.15

Log Normal distribution

Loglik(model)= -455 Loglik(intercept only)= -463
Chisq= 16.3 on 4 degrees of freedom, p= 0.0026

Number of Newton-Raphson Iterations: 4

n= 64

confint (m)

2.5 % 97.5%
(Intercept) 5.88 7.2367
OrganBronchus -2.48 -0.7352
OrganColon -1.68 0.0608
OrganOvary -1.55 0.7334
OrganStomach -2.51 -0.6693

Note the use of the function Surv to define the response variable. This is necessary to communicate any
censoring to the function (although here there is no censoring). Note also that the Scale is the estimate of
scale parameter o. The reason why it is different from what was obtained form 1m is that it is a maximum
likelihood estimate computed as

S (i — 6i)?

0=\ ==
n
Using flexsurvreg produces comparable results.
library (flexsurv)
m <- flexsurvreg(Surv(Survival) ~ Organ, dist = "lognormal", data = CancerSurvival)
print(m) # summary behaves differently for flexsurvreg objects --- use print instead
Call:



flexsurvreg(formula = Surv(Survival) ~ Organ, data = CancerSurvival,

dist = "lognormal")
Estimates:
data mean est L95% U957, se exp(est) L957% U957,

meanlog NA 6.5586 5.8805 7.2367 0.3460 NA NA NA
sdlog NA 1.1475 0.9650 1.3645 0.1014 NA NA NA
OrganBronchus  0.2656 -1.6054 -2.4757 -0.7352 0.4440 0.2008 0.0841 0.4794
OrganColon 0.2656 -0.8095 -1.6797 0.0608 0.4440 0.4451 0.1864 1.0627
OrganOvary 0.0938 -0.4080 -1.5494 0.7334 0.5824 0.6650 0.2124 2.0822
OrganStomach 0.2031 -1.5907 -2.5120 -0.6693 0.4701 0.2038 0.0811 0.5121

N = 64, Events: 64, Censored: O
Total time at risk: 35752
Log-likelihood = -455, df = 6
AIC = 922

Here sdlog corresponds to the scale parameter o, and meanlog corresponds to fBy. The est column gives
the estimates of 1, 82, ..., k. The se column is the standard error of each estimator, and the first set of
columns L95% and U957 give the confidence interval of each parameter.

Note that we can obtain the same estimates (although slightly different standard errors) using a linear model
for log T;.

Interpretation of Model Parameters in AFT Models
Recall that with an AFT model we can write time-till-event as
T = ePopbr@1pf2z2 | Btk o€

We can interpret parameters and linear combinations thereof by applying the exponential function in much
the same way as we do with a GLM that has a log link function.

Quantitative Explanatory Variable

Let
T, = 6506,31961 eﬁzwz L. eﬁkﬂck eo¢

be time-till-event at given values of the explanatory variables. If we increase z; by one unit to 1 + 1 then

we get
T, = eﬂ0651($1+1)eﬂ2l2 . eBpIpeUE _ 651 650651$1632$2 L 65p1p6067

Ty
so T, /Ty = €5 and T, = e T,

1. If 81 < 0 then e < 1 and increasing x; will “compress” time-till-event (i.e., “accelerate the passage
through time”) by a factor of e’*. We could also say that increasing ; by one unit reduces time-till-event
by a factor of €1, or by (1 — e1) x 100%.

2. If B; > 0 then e’ > 1 and increasing x; will “stretch” time-till-event (i.e., “decelerate the passage
through time”) by a factor of e®*. We could also say that increasing x; by one unit increases time-till-
event by a factor of €%, or by (e — 1) x 100%.

Also note that
E(Tb) = eﬁoelﬁﬂheﬁxﬂz . eﬁkxkE(ege)’

and
l;(jh) ::650661(x1+1)652$2...eﬁpxply(e“€>;: eﬁleﬂoeﬁlwleﬁzxz...eﬁpxpl§<606%

E(Ty)



so we can interpret e’ in the same way that we do for GLMs with a log link function in terms of what
happens to the expected time-till-event.

Example: Consider the following data from a study of the longevity of male fruit flies in five experimental
conditions.

library(faraway)

p <- ggplot(fruitfly, aes(x = thorax, y = longevity)) +
geom_point() + facet_wrap(~ activity, ncol = 5) +
labs(x = "Thorax Length (mm)", y = "Longevity (days)") +
theme_minimal ()

plot(p)
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m <- survreg(Surv(longevity) ~ activity + thorax, dist = "lognormal", data = fruitfly)

summary (m) $table

Value Std. Error z p

(Intercept) 1.8442 0.1939 9.51 1.93e-21
activityone  0.0517 0.0533 0.97 3.32e-01
activitylow -0.1239 0.0533 -2.32 2.01e-02
activitymany 0.0879 0.0541 1.62 1.04e-01
activityhigh -0.4193 0.0539 -7.78 7.46e-15
thorax 2.7215 0.2276 11.96 5.86e-33
Log(scale) -1.6692 0.0635 -26.29 2.72e-152

exp(cbind(coef (m), confint(m)))

2.5 % 97.5 %



(Intercept) 6.323 4.324 9.247
activityone 1.053 0.949 1.169
activitylow 0.883 0.796 0.981
activitymany 1.092 0.982 1.214
activityhigh 0.658 0.592 0.731
thorax 15.202 9.732 23.748
m <- flexsurvreg(Surv(longevity) ~ activity + thorax, dist = "lognormal", data = fruitfly)
print (m)
Call:
flexsurvreg(formula = Surv(longevity) ~ activity + thorax, data = fruitfly,

dist = "lognormal")
Estimates:

data mean est L95% U957, se exp(est) L95J U95%,

meanlog NA 1.8442 1.4641 2.2243 0.1939 NA NA NA
sdlog NA 0.1884 0.1663 0.2134 0.0120 NA NA NA
activityone 0.2016 0.0517 -0.0528 0.1563 0.0533 1.0531 0.9486 1.1692
activitylow 0.2016 -0.1239 -0.2283 -0.0194 0.0533 0.8835 0.7959  0.9808
activitymany 0.1935 0.0879 -0.0181 0.1940 0.0541 1.0919 0.9820 1.2140
activityhigh 0.2016 -0.4193 -0.5249 -0.3136 0.0539 0.6575 0.5916 0.7308
thorax 0.8224 2.7215 2.2754 3.1675 0.2276 15.2025 9.7320 23.7480

N = 124, Events: 124, Censored: O
Total time at risk: 7145
Log-likelihood = -465, df =7

AIC = 944

A 1mm increase in thorax length is huge. How about a 0.1 mm increase in thorax length? We can do this by
changing the units to tenths of a mm. One mm is ten tenths of a mm so multiplying length by 10 will put
the units into tenths of a mm.

m <- flexsurvreg(Surv(longevity) ~ activity + I(thorax*10), dist = "lognormal", data = fruitfly)
print (m)

Call:
flexsurvreg(formula = Surv(longevity) ~ activity + I(thorax *
10), data = fruitfly, dist = "lognormal")

Estimates:
data mean est L95% U957 se exp(est) L95% U95%

meanlog NA 1.8442 1.4641 2.2243 0.1939 NA NA NA
sdlog NA 0.1884 0.1663 0.2134 0.0120 NA NA NA
activityone 0.2016 0.0517 -0.0528 0.1563 0.0533 1.05631 0.9486 1.1692
activitylow 0.2016 -0.1239 -0.2283 -0.0194 0.0533 0.8835 0.7959 0.9808
activitymany 0.1935 0.0879 -0.0181 0.1940 0.0541 1.0919 0.9820 1.2140
activityhigh 0.2016 -0.4193 -0.5249 -0.3136 0.0539 0.6575 0.5916 0.7308
I(thorax * 10) 8.2242 0.2721 0.2275 0.3167 0.0228 1.3128 1.25655 1.3727

N = 124, Events: 124, Censored: O
Total time at risk: 7145
Log-likelihood = -465, df =7

AIC = 944

Example: Consider a AFT for the motors data.



m <- survreg(Surv(time, cens) ~ temp, dist = "lognormal", data = motors)
summary (m) $table

Value Std. Error z P
(Intercept) 16.4915 0.92914 17.75 1.75e-70
temp -0.0465 0.00485 -9.59 8.87e-22

Log(scale) -0.4684 0.18452 -2.54 1.11e-02
exp(cbind(coef(m), confint(m)))
2.5 % 97.5 Y%

(Intercept) 1.45e+07 2.35e+06 8.98e+07
temp 9.55e-01 9.45e-01 9.64e-01

Note: We will discuss the specification of the censoring in the next lecture.

Categorical Explanatory Variable

Suppose that x; is an indicator variable such that z; = 1 at a level a, and 7 = 0 at the reference level b.
Then we have that

T, = eﬁoeﬂ1l1652w2 L eﬂkwkeae and T, = 6506321’2 L eﬁkwkeUG’

noting that if ; = 1 then e®* = ¢/ and if 2; = 0 then %1 = 1. So
& _ eBoebrT1phats | .. oPrTE gO€ _ o
Ty ePoeB2z2 ... eBrTkoE ’

Similarly, T,/T, = 1/eft = e 1.

1. If 1 < 0 then e’ < 1 and so the time-till-event at level a is “compressed” (accelerated) relative to
that at level b by a factor of e’ (i.e., progression to the event is faster at level a than at level b by a
factor of e? ). We could also say that time-till-event at level a is (1 — e1) x 100% that of time-till-event
at level b, or that time-till-event at level b is (e — 1) x 100% that of time-till-event at level a.

2. If 81 > 0 then et > 1 and so the time-till-event at level a is “stretched” (decelerated) relative to that
at level b by a factor of e’ (i.e., progression to the event is slower at level a than at level b by a factor
of €#1). We could also say that time-till-event at level a is (e’ — 1) x 100% that of time-till-event at
level b, or that time-till-event at level b is (1 — €?) x 100% that of time-till-event at level a.

Furthermore, we can interpret /! in terms of expected values. We have that
E(Ta) _ 6506ﬂ1w16ﬁ2I2 .. eﬁkwk E(eae) and E(Tb) _ eﬂoeﬁzxz . eﬂkwkE(eo'f)’
SO
E(Ty) _ efoefiwiehama ... ehror [(e€) _
E(T,) ePoeBaza . .. e@kaE(eUG) ’
Again, the interpretation is like that for GLMs with the log link function.

Example: Consider a model for some fictional lifespan data.

library(trtools)
head(lifespan)

years species

1 36.5 human
2 5.6 dog
3 30.5 human
4 39.1 human
5 6.7 dog
6 1.8 dog
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p <- ggplot(lifespan, aes(x = years)) + facet_wrap(~ species) +
geom_histogram(boundary = 0, binwidth = 5, color = "black", fill = "white") +

labs(x = "Years", y = "Frequency") + theme_minimal()
plot(p)
human dog
400
300
>
O
c
(<)
g'200
o
LL
100
0
0 100 200 300 0 100 200 300
Years
m <- survreg(Surv(years) ~ species, dist = "lognormal", data = lifespan)
summary (m) $table
Value Std. Error z p
(Intercept) 4.196 0.0190 221.2 0.0e+00
speciesdog -1.946 0.0268 -72.5 0.0e+00
Log(scale) -0.511 0.0158 -32.3 3.9e-229

exp(cbind(coef (m), confint(m)))

2.5 % 97.5 %
(Intercept) 66.413 63.989 68.929
speciesdog 0.143 0.136 0.151

lifespan$species <- relevel(lifespan$species, ref = "human")
m <- survreg(Surv(years) ~ species, dist = "lognormal", data = lifespan)
summary (m) $table
Value Std. Error z P
(Intercept) 4.196 0.0190 221.2 0.0e+00
speciesdog -1.946 0.0268 -72.5 0.0e+00
Log(scale) -0.511 0.0158 -32.3 3.9e-229
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exp(cbind(coef (m), confint(m)))

2.5 % 97.5 %
(Intercept) 66.413 63.989 68.929
speciesdog 0.143 0.136 0.151

For categorical explanatory variables (i.e., factors) we can use the emmeans package to obtain inferences
concerning effects on time (but only for models estimated using survreg).

library (emmeans)
pairs(emmeans(m, ~species), type = "response", infer = TRUE)

contrast ratio SE  df lower.CL upper.CL null t.ratio p.value
human / dog 7 0.188 1997 6.64 7.38 1 72.500 <.0001

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

pairs(emmeans(m, ~species), type = "response", reverse = TRUE, infer = TRUE)

contrast ratio SE  df lower.CL upper.CL null t.ratio p.value
dog / human 0.143 0.00383 1997 0.136 0.151 1 -72.500 <.0001

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

Here we can compare the treatment conditions of the fruit fly experiment.

m <- survreg(Surv(longevity) ~ activity + thorax, dist = "lognormal", data = fruitfly)

pairs(emmeans(m, ~activity, at = list(thorax = 0.8)),
type = "response", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
isolated / one 0.950 0.0506 117 0.854 1.055 1 -0.970 0.3340
isolated / low 1.132 0.0603 117 1.019 1.258 1 2.320 0.0220
isolated / many 0.916 0.0496 117 0.823 1.019 1 -1.620 0.1070
isolated / high 1.521 0.0820 117 1.367 1.692 1 7.780 <.0001
one / low 1.192 0.0636 117 1.072 1.325 1 3.290 0.0010
one / many 0.964 0.0520 117 0.867 1.073 1 -0.670 0.5040
one / high 1.602 0.0859 117 1.440 1.781 1 8.790 <.0001
low / many 0.809 0.0438 117 0.727 0.901 1 -3.910 <.0001
low / high 1.344 0.0725 117 1.207 1.495 1 5.470 <.0001
many / high 1.661 0.0895 117 1.492 1.848 1 9.410 <.0001
Confidence level used: 0.95

Intervals are back-transformed from the log scale

Tests are performed on the log scale

pairs(emmeans(m, ~activity, at = list(thorax = 0.8)),
type = "response", adjust = "none", reverse = TRUE, infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value

one / isolated 1.053 0.0562 117 0.948 1.170 1 0.970 0.3340
low / isolated 0.883 0.0471 117 0.795 0.982 1 -2.320 0.0220
low / one 0.839 0.0448 117 0.755 0.932 1 -3.290 0.0010
many / isolated 1.092 0.0591 117 0.981 1.215 1 1.620 0.1070
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many / one 1.037 0.0559 117 0.932 1.154 1 0.670 0.5040
many / low 1.236 0.0669 117 1.110 1.376 1 3.910 <.0001
high / isolated 0.658 0.0354 117 0.591 0.732 1 -7.780 <.0001
high / one 0.624 0.0335 117 0.561 0.694 1 -8.790 <.0001
high / low 0.744 0.0402 117 0.669 0.828 1 -5.470 <.0001
high / many 0.602 0.0325 117 0.541 0.670 1 -9.410 <.0001

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

Note that since there is no interaction between activity and thorax the value of thorax that we use does not
matter.

Suppose there was an interaction between thorax length (in 0.1 mm units) and the treatment condition.

m <- survreg(Surv(longevity) ~ activity * I(thorax*10), dist = "lognormal", data = fruitfly)
summary (m) $table

Value Std. Error z P
(Intercept) 2.14427 0.3729 5.7508 8.88e-09
activityone 0.24139 0.5793 0.4167 6.77e-01
activitylow -0.57478 0.5810 -0.9894 3.22e-01
activitymany 0.05462 0.5564 0.0982 9.22e-01
activityhigh -1.54650 0.5351 -2.8902 3.85e-03
I(thorax * 10) 0.23625 0.0444 5.3228 1.02e-07
activityone:I(thorax * 10) -0.02342 0.0695 -0.3369 7.36e-01
activitylow:I(thorax * 10) 0.05390 0.0691 0.7796 4.36e-01
activitymany:I(thorax * 10) 0.00306 0.0673 0.0454 9.64e-01
activityhigh:I(thorax * 10) 0.13929 0.0652 2.1365 3.26e-02
Log(scale) -1.69707 0.0635 -26.7255 2.38e-157

Here is how we can estimate this effect using the emmeans package.

m <- survreg(Surv(longevity) ~ activity #* thorax, dist = "lognormal", data = fruitfly)
pairs(emmeans(m, ~thorax|activity, at = list(thorax = c(0.5,0.4)),
type = "response"), infer = TRUE)

activity = isolated:
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
thorax0.5 / thorax0.4 1.27 0.0562 113 1.16 1.38 1 5.320 <.0001

activity = one:
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
thorax0.5 / thorax0.4 1.24 0.0662 113 1.11 1.38 1 3.980 0.0001

activity = low:
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
thorax0.5 / thorax0.4 1.34 0.0709 113 1.20 1.49 1 5.470 <.0001

activity = many:
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
thorax0.5 / thorax0.4 1.27 0.0643 113 1.15 1.40 1  4.730 <.0001

activity = high:

contrast ratio SE df lower.CL upper.CL null t.ratio p.value
thorax0.5 / thorax0.4 1.46 0.0695 113 1.32 1.60 1 7.860 <.0001
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Confidence level used: 0.95

Intervals are back-transformed from the log scale

Tests are performed on the log scale

Unfortunately the emmeans package function cannot be used with a flexsurvreg object, but we can get
the effects of thorax length through clever re-parameterization.

m <- flexsurvreg(Surv(longevity) ~ activity + activity:I(thorax*10),

dist = "lognormal", data = fruitfly)
print (m)

Call:

flexsurvreg(formula = Surv(longevity) ~ activity + activity:I(thorax *

10), data = fruitfly, dist = "lognormal")

Estimates:
data mean
meanlog NA
sdlog NA
activityone 0.2016
activitylow 0.2016
activitymany 0.1935
activityhigh 0.2016
activityisolated:I(thorax * 10)  1.6855
activityone:I(thorax * 10) 1.6645
activitylow:I(thorax * 10) 1.6887
activitymany:I(thorax * 10) 1.5726
activityhigh:I(thorax * 10) 1.6129
U95Y%

meanlog NA
sdlog NA
activityone 3.9621
activitylow 1.7575
activitymany 3.1426
activityhigh 0.6079
activityisolated:I(thorax * 10) 1.3816
activityone:I(thorax * 10) 1.3740
activitylow:I(thorax * 10) 1.4830
activitymany:I(thorax * 10) 1.4029
activityhigh:I(thorax * 10) 1.5986

N = 124, Events: 124, Censored: O
Total time at risk: 7145
Log-likelihood = -462, df = 11

AIC = 945

est

.1443
.1832
.2414
.5748
.0546
.5465
.2363
.2128
.2902
.2393
.3755

2

o
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L95%

1

-1
-1
-2

O O O O O

.4135

0.
-0.
.7135
.03568
.5963
.1493
.1079
.1863
.1401
.2819

1618
8940

2
0.
1.
0.
1.

-0.

O O O O O

U957,
.8751

2075
3768
5639
1450
4977

.3232
L3177
.3941
.3385
.4691

se

O O O OO OO OO oOOo

.3729
.0116
.5793
.5810
.5564
.5351
.0444
.0535
.0630
.0506
.0478

exp(est)

P Rr R R, ROR O

NA
NA

.2730
.5628
.0661
.2130
.2665
.2372
.3366
.2704
.4558

L95%

R B BP0 000

NA
NA

.4090
.1802
.3549
.0746
.1610
.1140
.2047
.1504
.3257
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