
Monday, March 31

Review of Linear Functions of Model Parameters
Consider a regression model with parameters β0, β1, . . . , βk. Sometimes our inferences concern a linear
function of the form

ℓ = a0β0 + a1β1 + a2β2 + · · · + akβk + b,

where a0, a1, . . . , ak and b are user-specified coefficients (frequently b = 0, and to simplify what follows assume
b = 0). Often (but not always) quantities of interest can be expressed as linear functions.

Example: Consider the linear model

E(Gi) = β0 + β1di + β2ti + β3diti.

for the whiteside data, where Gi is gas consumption, ti is temperature, and di is an indicator variable for
after insulation such that

di =
{

1, if the i-th observation is after insulation,

0, otherwise.

Then we can write the model case-wise as

E(Gi) =
{

β0 + β2ti, if i-th observation is before insulation,

β0 + β1 + (β2 + β3)ti, if i-th observation is after insulation.

Several quantities that might be of interest can be written as linear functions. The lincon and contrast
functions facilitate inferences regarding linear function. First we specify the model.
m <- lm(Gas ~ Insul + Temp + Insul:Temp, data = MASS::whiteside)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.854 0.1360 50.41 8.00e-46
InsulAfter -2.130 0.1801 -11.83 2.32e-16
Temp -0.393 0.0225 -17.49 1.98e-23
InsulAfter:Temp 0.115 0.0321 3.59 7.31e-04

Now consider the following linear functions:

1. Rate of change before insulation:

ℓ = 0β0 + 0β1 + 1β2 + 0β3 = β2.

library(trtools)
lincon(m, a = c(0,0,1,0))

estimate se lower upper tvalue df pvalue
(0,0,1,0),0 -0.393 0.0225 -0.438 -0.348 -17.5 52 1.98e-23

contrast(m,
a = list(Insul = "Before", Temp = 1),
b = list(Insul = "Before", Temp = 0))
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estimate se lower upper tvalue df pvalue
-0.393 0.0225 -0.438 -0.348 -17.5 52 1.98e-23

2. Rate of change after insulation:

ℓ = 0β0 + 0β1 + 1β2 + 1β3 = β2 + β3.

lincon(m, a = c(0,0,1,1))

estimate se lower upper tvalue df pvalue
(0,0,1,1),0 -0.278 0.0229 -0.324 -0.232 -12.1 52 8.94e-17

contrast(m,
a = list(Insul = "After", Temp = 1),
b = list(Insul = "After", Temp = 0))

estimate se lower upper tvalue df pvalue
-0.278 0.0229 -0.324 -0.232 -12.1 52 8.94e-17

3. Expected gas consumption before insulation at 5C:

ℓ = 1β0 + 0β1 + 5β2 + 0β3 = β0 + 5β2.

lincon(m, a = c(1,0,0,5))

estimate se lower upper tvalue df pvalue
(1,0,0,5),0 7.43 0.267 6.89 7.97 27.8 52 6.73e-33

contrast(m, a = list(Insul = "Before", Temp = 5))

estimate se lower upper tvalue df pvalue
4.89 0.0638 4.76 5.02 76.6 52 3.89e-55

Technical Details

To estimate ℓ we simply replace β0, β1, . . . , βk with estimates to obtain

ℓ̂ = a0β̂0 + a1β̂1 + · · · + akβ̂k.

To compute the variance of ℓ̂ we use the result that

Var(ℓ̂) =
k∑

j=0

k∑
j′=0

ajaj′Cov(β̂j , β̂j′),

where Cov(β̂j , β̂j′) is the covariance between the estimators β̂j and β̂j′ , and note that the covariance of an
estimator with itself is its variance — i.e., Cov(β̂j , β̂j) = Var(β̂j).

Example: If we had the model E(Yi) = β0 + β1xi then the covariances can be arranged in a matrix as[
Cov(β̂0, β̂0) Cov(β̂0, β̂1)
Cov(β̂1, β̂0) Cov(β̂1, β̂1)

]
=

[
Var(β̂0) Cov(β̂0, β̂1)

Cov(β̂0, β̂1) Var(β̂1)

]
,

noting that the covariance of a variable with itself is its variance, and covariances are symmetric in the sense
that Cov(β̂0, β̂1) = Cov(β̂0, β̂1). If we wanted to compute the variance of the linear function ℓ = 1β0 + 5β1 so
that a0 = 1 and a1 = 5, then the variance of ℓ̂ would be

Var(ℓ̂) = 1 × 1 × Var(β̂0) + 1 × 5 × Cov(β̂0, β̂1) + 5 × 1 × Cov(β̂0, β̂1) + 5 × 5 × Var(β̂1),
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which simplifies to
Var(ℓ̂) = Var(β̂0) + 10Cov(β̂0, β̂1) + 25Var(β̂1).

Typically we only have estimates of the variances and covariances so we can only compute an estimate of
Var(ℓ̂) denoted as V̂ar(ℓ̂). The square root of this estimate is the standard error you usually see reported by
R functions like contrast and lincon. The confidence interval for ℓ is then

ℓ̂ ± t

√
V̂ar(ℓ̂) or ℓ̂ ± z

√
V̂ar(ℓ̂),

and the test statistic is
ℓ̂ − ℓ√
V̂ar(ℓ̂)

,

where typically ℓ = 0 because the null hypothesis is that H0 : ℓ = 0. This is the test statistic you typically see
reported by R functions like contrast and lincon.

The Delta Method
The delta method is used to approximate the sampling distribution of a nonlinear function of model parameters.

Example: Consider a logistic regression model for the bliss data.
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The model can be written as
log

[
E(Y )

1 − E(Y )

]
= β0 + β1x,
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where x is concentration. The LD50 is the value of x (e.g., dose, concentration) such that the expected
proportion of deaths is 0.5 so that

log
[

0.5
1 − 0.5

]
= β0 + β1LD50.

Solving for LD50 gives
LD50 = −β0

β1
.

An estimator of LD50 is

L̂D50 = −β̂0

β̂1
,

but this is a nonlinear function of β̂0 and β̂1.

Technical Details

The delta method uses the following results:

1. Nonlinear functions of the model parameters can be “locally approximated” by a linear function (see
below).

2. As n increases sampling distributions become increasingly “concentrated” in a location near the actual
quantity being estimated.

3. If the sampling distribution of β̂0, β̂1, . . . , β̂k is approximately (multivariate) normal, then the sampling
distribution of an (approximately) linear function of these estimators is also approximately normal.

Let f(β0, β1, . . . , βk) be a function of β0, β1, . . . , βk such as f(β0, β1) = −β0/β1. Using some calculus it can be
shown that in many practical cases we can approximate f(β0, β1, . . . , βk) at any specific point (i.e., “locally”)
by

ℓ ≈ c + d0β0 + d1β1 + · · · + dkβk,

where c is a constant. The coefficients d0, d1, . . . , d1 are the partial derivatives of f(β0, β1, . . . , βk) at given
values of β0, β1, . . . , βk so that

dj = ∂f(β0, β1, . . . , βk)
∂βj

.

We approximate f(β0, β1, . . . , βk) at f(β̂0, β̂1, . . . , β̂k). Then we can compute

Var[f(β̂0, β̂1, . . . , β̂k)] ≈
k∑

j=0

k∑
j′=0

djdj′Cov(β̂j , β̂j′),

where the partial derivatives are evaluated at the parameter estimates. The main mathematical challenge
perhaps is evaluating the partial derivatives. This may be done analytically or numerically.

Example: Consider again the problem of making inferences regarding LD50 = −β0/β1. The dmethod
function from the trtools package implements the delta method, using numerically approximated derivatives
for greater flexibility.
library(trtools)
m <- glm(cbind(dead, exposed - dead) ~ concentration, family = binomial, data = bliss)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) -14.808 1.2898 -11.5 1.63e-30 -17.478 -12.409
concentration 0.249 0.0214 11.7 2.25e-31 0.209 0.294

dmethod(m, pfunc = "-b0/b1", pname = c("b0","b1"))
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estimate se lower upper tvalue df pvalue
59.4 0.529 58.4 60.5 112 Inf 0

Example: The “instantaneous” marginal effect of dose for the logistic model for the bliss data is the slope
of a tangent line at a given value of dose (x). A little calculus shows that this is

∂

∂x

eβ0+β1x

1 + eβ0+β1x
= β1eβ0+β1x

(1 + eβ0+β1x)2 .

Here is the estimate of the instantaneous marginal effect at the (estimated) LD50 from above.
dmethod(m, pfunc = "b1*exp(b0+b1*59.43)/(1+exp(b0+b1*59.43))ˆ2", pname = c("b0","b1"))

estimate se lower upper tvalue df pvalue
0.0623 0.00535 0.0518 0.0728 11.7 Inf 2.24e-31

The margeff function does the same thing but computes the derivative above numerically.
margeff(m, delta = 0.001,
a = list(concentration = 59.43 + 0.001),
b = list(concentration = 59.43))

estimate se lower upper tvalue df pvalue
0.0623 0.00535 0.0518 0.0728 11.7 Inf 2.25e-31

Since LD50 = −β0/β1 we can substitute this for x in the expression for the instantaneous marginal effect.
Simplifying gives

β1eβ0+β1(−β0/β1)

(1 + eβ0+β1(−β0/β1))2 = β1/4.

So then we have
dmethod(m, pfunc = "b1/4", pname = c("b0","b1"))

estimate se lower upper tvalue df pvalue
0.0623 0.00535 0.0518 0.0728 11.7 Inf 2.25e-31

but since β1/4 = a0β0 + a1β1 where a0 = 0 and a1 = 1/4 we can do this using lincon as well.
lincon(m, a = c(0,0.25))

estimate se lower upper tvalue df pvalue
(0,1/4),0 0.0623 0.00535 0.0518 0.0728 11.7 Inf 2.25e-31

It is useful to note that when the function is linear, dmethod will produce the same results as lincon. But
it provides a slightly different interface which can be useful since it does not require us to figure out the
coefficients a0, a1, . . . , ak.

Example: Consider again the model for the whiteside data.
m.gas <- lm(Gas ~ Insul + Temp + Insul:Temp, data = MASS::whiteside)

The rate of change after insulation is β2 + β3.
lincon(m.gas, a = c(0,0,1,1))

estimate se lower upper tvalue df pvalue
(0,0,1,1),0 -0.278 0.0229 -0.324 -0.232 -12.1 52 8.94e-17

contrast(m.gas,
a = list(Insul = "After", Temp = 1),
b = list(Insul = "After", Temp = 0))
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estimate se lower upper tvalue df pvalue
-0.278 0.0229 -0.324 -0.232 -12.1 52 8.94e-17

dmethod(m.gas, pfunc = "b2 + b3", pname = c("b0","b1","b2","b3"))

estimate se lower upper tvalue df pvalue
-0.278 0.0229 -0.323 -0.233 -12.1 Inf 7.88e-34

Example: Returning the the bliss data and model, consider the discrete marginal effect of increasing dose
from 50 to 60 mg/liter. This is

eβ0+β160

1 + eβ0+β160 − eβ0+β150

1 + eβ0+β150 .

This is a nonlinear function of β0 and β1. We can apply the delta method as follows.
dmethod(m, pfunc = "plogis(b0 + b1*60) - plogis(b0 + b1*50)", pname = c("b0","b1"))

estimate se lower upper tvalue df pvalue
0.448 0.028 0.394 0.503 16 Inf 7.66e-58

Note that the R function plogis is ex/(1 + ex) so that saves us a little typing. The margeff function does
the same thing but is maybe easier to use here.
margeff(m, a = list(concentration = 60), b = list(concentration = 50))

estimate se lower upper tvalue df pvalue
0.448 0.028 0.394 0.503 16 Inf 7.66e-58

Example: Consider a polynomial regression model for the expected tensile strength as a function of percent
hardwood such that

E(Si) = β0 + β1pi + β2p2
i ,

where Si is tensile strength and pi is percent hardwood. Here is what the estimated model looks like.
library(GLMsData)
data(paper)
m <- lm(Strength ~ Hardwood + I(Hardwoodˆ2), data = paper)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.674 3.3997 -1.96 6.73e-02
Hardwood 11.764 1.0028 11.73 2.85e-09
I(Hardwood^2) -0.635 0.0618 -10.27 1.89e-08

d <- data.frame(Hardwood = seq(1, 15, length = 100))
d$yhat <- predict(m, newdata = d)
p <- ggplot(paper, aes(x = Hardwood, y = Strength)) +

geom_point() + theme_classic() +
geom_line(aes(y = yhat), data = d) +
labs(x = "Percent Hardwood", y = "Tensile Strength (psi)")

plot(p)
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Now consider the problem of estimating (a) the value of percent hardwood at which expected tensile strength
is maximized, and (b) the maximum expected tensile strength. The percent hardwood that maximizes
expected tensile strength (pm) can be derived as

d(β0 + β1p + β2p2)
dp

= β1 + 2β2p = 0 ⇒ pm = −β1

2β2
.

Now if we replace p with pm in E(S) = β0 + β1p + β2p2 we find the maximum expected tensile strength (sm)
to be

sm = β0 + β1
−β1

2β2
+ β2

(
−β1

2β2

)2
= 4β0β2 − β2

1
4β2

.

Both pm and sm are nonlinear functions of β0, β1 and β2.
dmethod(m, pfunc = "-b1/(2*b2)", pname = c("b0","b1","b2"))

estimate se lower upper tvalue df pvalue
9.27 0.234 8.81 9.73 39.6 Inf 0

dmethod(m, pfunc = "(4*b0*b2-b1ˆ2)/(4*b2)", pname = c("b0","b1","b2"))

estimate se lower upper tvalue df pvalue
47.8 1.49 44.9 50.8 32 Inf 7.66e-225

Whenever possible try to check these kinds of estimates against a plot of the data and/or model to catch
errors.

Example: Consider a study on moth coloration and predation.
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library(Sleuth3)
m <- glm(cbind(Removed, Placed - Removed) ~ Distance + Morph +

Distance:Morph, data = case2102, family = binomial)

d <- expand.grid(Distance = seq(0, 100, length = 100), Morph = c("light","dark"))
d$yhat <- predict(m, d, type = "response")

p <- ggplot(case2102, aes(x = Distance, y = Removed/Placed)) +
geom_point(aes(fill = Morph), size = 2, shape = 21) +
geom_line(aes(y = yhat, linetype = Morph), data = d) +
scale_fill_manual(values = c("black","white")) + theme_classic() +
labs(y = "Observed/Expected Proportion", x = "Distance from Liverpool (km)")

plot(p)
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Suppose we want to estimate the point at which the two curves cross. First consider the model parameteriza-
tion.
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.1290 0.19791 -5.70 1.17e-08
Distance 0.0185 0.00565 3.28 1.05e-03
Morphlight 0.4113 0.27449 1.50 1.34e-01
Distance:Morphlight -0.0278 0.00809 -3.44 5.88e-04

This model can be written as
E(Yi) = eηi

1 + eηi
,
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where Yi is the i-th observation of the proportion of removed moths, and the linear predictor ηi is parameterized
as

ηi =
{

β0 + β1di, if the morph of the i-th observation is dark,

β0 + β2 + (β1 + β3)di, if the morph of the i-th observation is light,

where di is the distance from Liverpool for the i-th observation. Let dc be the distance at which the expected
proportions are equal for both light and dark moths, then dc must satisfy the equation

β0 + β1dc = β0 + β2 + (β1 + β3)dc.

Solving this equation for dc gives dc = −β2/β3 (assuming that β3 ≠ 0). Note that dc is a nonlinear function
of β2 and β3. Inferences concerning dc can be made using the delta method.
dmethod(m, pfunc = "-b2/b3", pname = c("b0","b1","b2","b3"))

estimate se lower upper tvalue df pvalue
14.8 6.56 1.94 27.7 2.26 Inf 0.0241

Example: Suppose we want to estimate the values of two explanatory variables that maximize (or minimize)
and expected response.
m <- lm(Yield ~ Time + Temp + I(Timeˆ2) + I(Tempˆ2) +
I(Time*Temp), data = rsm::ChemReact)

d <- expand.grid(Time = seq(77, 93, length = 100),
Temp = seq(160, 185, length = 100))

d$yhat <- predict(m, newdata = d)

p <- ggplot(d, aes(x = Time, y = Temp, z = yhat))
p <- p + geom_contour(bins = 20) + theme_classic()
plot(p)
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The model is
E(Yi) = β0 + β1timei + β2tempi + β3time2

i + β4temp2
i + β5timeitempi,

where Yi is yield. Let am and bm be the values of time and temperature, respectively, that maximize E(Y ).
These satisfy

∂(β0 + β1am + β2bm + β3a2
m + β4b2

m + β5ambm)
∂am

= 0,

∂(β0 + β1am + β2bm + β3a2
m + β4b2

m + β5ambm)
∂bm

= 0.

Solving this system of equations for am and bm we get

am = 2β1β4 − β2β5

β2
5 − 4β3β4

and bm = 2β2β3 − β1β5

β2
5 − 4β3β4

.

These can be estimated as follows.
dmethod(m, pfunc = "(2*b1*b4 - b2*b5)/(b5ˆ2 - 4*b3*b4)",

pname = c("b0","b1","b2","b3","b4","b5"))

estimate se lower upper tvalue df pvalue
86.9 2.74 81.5 92.2 31.7 Inf 7.42e-221

dmethod(m, pfunc = "(2*b2*b3 - b1*b5)/(b5ˆ2 - 4*b3*b4)",
pname = c("b0","b1","b2","b3","b4","b5"))

estimate se lower upper tvalue df pvalue
177 3.76 169 184 47 Inf 0
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There are functions from several other packages that will implement the delta method in various ways. Most
are not as flexible as the dmethod function from the trtools package, but the hypotheses function from the
marginaleffects package is quite flexible.
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