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Discrete Marginal Effects
Consider a regression model with (without loss of generality) two explanatory variables, X1 and X2. A
discrete marginal effect is the change in the expected response when we change an explanatory variable.

For example, if we have a regression model where E(Y ) is a function of X1 and X2, the discrete marginal
effect of changing X1 from xb to xa is

E(Y |X1 = xa, X2 = x2) − E(Y |X1 = xb, X2 = x2).

That is, the change in the expected response when X1 is changed from xb to xa. (Note: When we talk about
a change in the expected response or the “effect” of a change in an explanatory variable, we do not necessarily
mean that this is a causal relationship.)

In a linear model a discrete marginal effect is basically what is done by contrast.

Example: Recall our model for the whiteside data. The function margeff in the trtools package will
estimate a discrete marginal effect.
m <- lm(Gas ~ Insul + Temp + Insul:Temp, data = MASS::whiteside)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.854 0.1360 50.41 8.00e-46
InsulAfter -2.130 0.1801 -11.83 2.32e-16
Temp -0.393 0.0225 -17.49 1.98e-23
InsulAfter:Temp 0.115 0.0321 3.59 7.31e-04

The model is
E(Yi) = β0 + β1ai + β2t + β3aiti,

where Yi is gass consumption,

ai =
{

1, if the i-th observation is after insulation,

0, otherwise.

So the marginal effect of increasing temperature from tb = 2 to ta = 7 after insulation is

E(Y |a = 1, t = 7) − E(Y |a = 1, t = 2) = 5(β2 + β3).

Before insulation it is
E(Y |a = 0, t = 7) − E(Y |a = 0, t = 2) = 5β2.

We can estimate this using the lincon or contrast functions.
library(trtools)
lincon(m, a = c(0,0,5,5)) # marginal effect after insulation

estimate se lower upper tvalue df pvalue
(0,0,5,5),0 -1.39 0.115 -1.62 -1.16 -12.1 52 8.94e-17
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lincon(m, a = c(0,0,5,0)) # marginal effect after insulation

estimate se lower upper tvalue df pvalue
(0,0,5,0),0 -1.97 0.112 -2.19 -1.74 -17.5 52 1.98e-23

contrast(m, cnames = c("Before","After"),
a = list(Temp = 7, Insul = c("Before","After")),
b = list(Temp = 2, Insul = c("Before","After")))

estimate se lower upper tvalue df pvalue
Before -1.97 0.112 -2.19 -1.74 -17.5 52 1.98e-23
After -1.39 0.115 -1.62 -1.16 -12.1 52 8.94e-17

The function margeff (also from the trtools package) is specifically designed to estimate marginal effects
(and other things) and works similarly to contrast.
margeff(m, cnames = c("Before","After"),

a = list(Temp = 7, Insul = c("Before","After")),
b = list(Temp = 2, Insul = c("Before","After")))

estimate se lower upper tvalue df pvalue
Before -1.97 0.112 -2.19 -1.74 -17.5 52 1.98e-23
After -1.39 0.115 -1.62 -1.16 -12.1 52 8.94e-17

We can also estimate the discrete marginal effect of adding insulation at different temperatures.
contrast(m, cnames = c("0C","5C","10C"),

a = list(Temp = c(0,5,10), Insul = "After"),
b = list(Temp = c(0,5,10), Insul = "Before"))

estimate se lower upper tvalue df pvalue
0C -2.130 0.1801 -2.49 -1.769 -11.83 52 2.32e-16
5C -1.553 0.0878 -1.73 -1.377 -17.70 52 1.15e-23
10C -0.977 0.1858 -1.35 -0.604 -5.26 52 2.78e-06

margeff(m, cnames = c("0C","5C","10C"),
a = list(Temp = c(0,5,10), Insul = "After"),
b = list(Temp = c(0,5,10), Insul = "Before"))

estimate se lower upper tvalue df pvalue
0C -2.130 0.1801 -2.49 -1.769 -11.83 52 2.32e-16
5C -1.553 0.0878 -1.73 -1.377 -17.70 52 1.15e-23
10C -0.977 0.1858 -1.35 -0.604 -5.26 52 2.78e-06

So what’s the use of margeff? The contrast and lincon functions can only handle linear functions of the
model parameters. But in some cases the marginal effect is not a linear function of the model parameters.
This is where the margeff function is useful.

Example: Consider the following nonlinear model for the change in expected weight over time.
m <- nls(Weight ~ t1 + t2*2ˆ(-Days/t3), data = MASS::wtloss,

start = list(t1 = 90, t2 = 95, t3 = 120))

d <- data.frame(Days = seq(0, 250, by = 1))
d$yhat <- predict(m, newdata = d)

p <- ggplot(MASS::wtloss, aes(x = Days, y = Weight)) +
geom_point() + theme_classic() +
labs(y = "Weight (kg)", x = "Time (Days)") +
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geom_line(aes(y = yhat), data = d)
plot(p)
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The model is
E(Y ) = θ1 + θ22−d/θ3 ,

where Y is weight and d is days. The discrete marginal effect of going from 50 to 100 days is

θ1 + θ22−100/θ3︸ ︷︷ ︸
E(Y |d=100)

−(θ1 + θ22−50/θ3︸ ︷︷ ︸
E(Y |d=50)

) = θ2(2−100/θ3 − 2−50/θ3).

This is not a linear function of the model parameters, so we cannot use the usual methods like contrast
or lincon. But we can make (approximate) inferences using the delta method (more on that later). The
margeff function makes implementing this method relatively straight forward.
margeff(m, a = list(Days = 100), b = list(Days = 50))

estimate se lower upper tvalue df pvalue
-17.4 0.129 -17.7 -17.2 -135 49 1.18e-64

margeff(m,
a = list(Days = c(50,100,150,200)),
b = list(Days = c(0,50,100,150)),
cnames = c("0->50", "50->100", "100->150", "150->200"))

estimate se lower upper tvalue df pvalue
0->50 -22.3 0.329 -22.9 -21.6 -67.6 49 4.84e-50
50->100 -17.4 0.129 -17.7 -17.2 -134.9 49 1.18e-64
100->150 -13.7 0.103 -13.9 -13.4 -132.2 49 3.11e-64

3



150->200 -10.7 0.161 -11.0 -10.4 -66.6 49 1.00e-49

Example: Consider the following model for the insecticide data.
m <- glm(cbind(deaths, total-deaths) ~ log(deposit) + insecticide,

family = binomial, data = insecticide)

d <- expand.grid(deposit = seq(2, 8, length = 100),
insecticide = unique(insecticide$insecticide))

d$phat <- predict(m, newdata = d, type = "response")

p <- ggplot(insecticide, aes(x = deposit, y = deaths/total)) +
geom_point() + facet_wrap(~ insecticide) +
geom_line(aes(y = phat), data = d) + theme_minimal() +
labs(x = "Deposit (mg per 10 square cm)",

y = "Proportion of Deaths")
plot(p)
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We know how to interpret the effects using odds ratios. Here are the odds ratios for the effect of doubling the
deposit from 2 to 4 units.
contrast(m, tf = exp,

a = list(deposit = 4, insecticide = c("g-BHC","both","DDT")),
b = list(deposit = 2, insecticide = c("g-BHC","both","DDT")),
cnames = c("g-BHC","both","DDT"))

estimate lower upper
g-BHC 6.48 4.83 8.68
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both 6.48 4.83 8.68
DDT 6.48 4.83 8.68

And here are the odds ratios for the effect of insecticide (g-BHC versus DDT).
contrast(m, tf = exp,

a = list(deposit = c(2,4,6,8), insecticide = "g-BHC"),
b = list(deposit = c(2,4,6,8), insecticide = "DDT"),
cnames = c("2","4","6","8"))

estimate lower upper
2 2.04 1.38 3.01
4 2.04 1.38 3.01
6 2.04 1.38 3.01
8 2.04 1.38 3.01

But with odds ratios we have to interpret effects in terms of odds. What if we want to interpret the effect on
the probability? The discrete marginal effect is in terms of the expected response (here the expected proportion
or, equivalently, the probability of death).
margeff(m,

a = list(deposit = 4, insecticide = c("g-BHC","both","DDT")),
b = list(deposit = 2, insecticide = c("g-BHC","both","DDT")),
cnames = c("g-BHC","both","DDT"))

estimate se lower upper tvalue df pvalue
g-BHC 0.352 0.0247 0.303 0.400 14.24 Inf 5.18e-46
both 0.301 0.0365 0.229 0.372 8.24 Inf 1.74e-16
DDT 0.242 0.0219 0.200 0.285 11.08 Inf 1.63e-28

Here are some discrete marginal effects of insecticide (g-BHC versus DDT).
margeff(m,

a = list(deposit = c(2,4,6,8), insecticide = "g-BHC"),
b = list(deposit = c(2,4,6,8), insecticide = "DDT"),
cnames = c("2","4","6","8"))

estimate se lower upper tvalue df pvalue
2 0.0582 0.0177 0.0235 0.093 3.28 Inf 0.001026
4 0.1675 0.0456 0.0781 0.257 3.67 Inf 0.000243
6 0.1603 0.0439 0.0742 0.246 3.65 Inf 0.000264
8 0.1128 0.0322 0.0495 0.176 3.50 Inf 0.000472

The appeal of the marginal effect here is that for many people probabilities are more intuitive than odds.

Example: Consider the following model for data from a study of the effect of blood plasma concentra-
tion/dilution on clotting time.
clotting <- data.frame(

conc = rep(c(5,10,15,20,30,40,60,80,100), 2),
time = c(118,58,42,35,27,25,21,19,18,69,35,26,21,18,16,13,12,12),
lot = rep(c("L1","L2"), each = 9)

)
head(clotting)

conc time lot
1 5 118 L1
2 10 58 L1
3 15 42 L1
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4 20 35 L1
5 30 27 L1
6 40 25 L1

m <- glm(time ~ lot + log(conc) + lot:log(conc),
family = Gamma(link = inverse), data = clotting)

d <- expand.grid(conc = seq(5, 100, length = 100), lot = c("L1","L2"))
d$yhat <- predict(m, newdata = d, type = "response")

p <- ggplot(clotting, aes(x = conc, y = time)) + theme_minimal() +
geom_point() + facet_wrap(~ lot) + facet_wrap(~ lot) +
labs(x = "Plasma Concentration (percent)", y = "Clotting Time (sec)") +
scale_x_continuous(breaks = c(5,10,50,100)) +
geom_line(aes(y = yhat), data = d)

plot(p)
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summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01655 0.000865 -19.13 1.97e-11
lotL2 -0.00735 0.001678 -4.38 6.25e-04
log(conc) 0.01534 0.000387 39.63 8.85e-16
lotL2:log(conc) 0.00826 0.000735 11.23 2.18e-08

This generalized linear model can be written as
1

E(Ti)
= β0 + β1li + β2 log2 ci + β3li log2 ci,
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or, equivalently,
E(Ti) = 1

β0 + β1li + β2 log2 ci + β3li log2 ci
,

where Ti is clotting time, ci is plasma concentration, and li is an indicator variable such that li = 1 if the
i-th observation is from the second lot, and li = 0 otherwise.

Marginal effects of increasing the plasma concentration from 5 to 10 in each lot.
margeff(m,

a = list(conc = 10, lot = c("L1","L2")),
b = list(conc = 5, lot = c("L1","L2")),
cnames = c("L1,5->10","L2,5->10"))

estimate se lower upper tvalue df pvalue
L1,5->10 -69.6 4.81 -79.9 -59.3 -14.5 14 8.15e-10
L2,5->10 -38.2 2.71 -44.0 -32.4 -14.1 14 1.16e-09

Marginal effects of increasing from 5 to 10, 10 to 50, and 50 to 100 in the first lot.
margeff(m,

a = list(conc = c(10,50,100), lot = "L1"),
b = list(conc = c(5,10,50), lot = "L1"),
cnames = c("L1,5->10","L1,10->50","L1,50->100"))

estimate se lower upper tvalue df pvalue
L1,5->10 -69.60 4.8081 -79.91 -59.28 -14.5 14 8.15e-10
L1,10->50 -30.26 0.7124 -31.79 -28.73 -42.5 14 3.38e-16
L1,50->100 -4.52 0.0696 -4.67 -4.37 -65.0 14 9.06e-19

Marginal effects for plasma concentration for the second lot.
margeff(m,

a = list(conc = c(10,50,100), lot = "L2"),
b = list(conc = c(5,10,50), lot = "L2"),
cnames = c("L2,5->10","L2,10->50","L2,50->100"))

estimate se lower upper tvalue df pvalue
L2,5->10 -38.20 2.7107 -44.01 -32.38 -14.1 14 1.16e-09
L2,10->50 -18.24 0.4595 -19.23 -17.26 -39.7 14 8.61e-16
L2,50->100 -2.82 0.0436 -2.91 -2.73 -64.7 14 9.61e-19

Marginal effects for lot at three plasma concentrations.
margeff(m,

a = list(conc = c(25,50,75), lot = c("L1")),
b = list(conc = c(25,50,75), lot = c("L2")),
cnames = c("25","50","75"))

estimate se lower upper tvalue df pvalue
25 11.25 0.581 10.00 12.49 19.4 14 1.67e-11
50 8.39 0.481 7.36 9.42 17.4 14 6.84e-11
75 7.30 0.439 6.36 8.24 16.6 14 1.30e-10

“Instantaneous” Marginal Effects
Consider a regression model with (without loss of generality) two explanatory variables, X1 and X2. Assuming
that X1 is continuous, the “instantaneous” marginal effect of X1 at x1 when X2 = x2 is

lim
δ→0

E(Y |X1 = x1 + δ, X2 = x2) − E(Y |X1 = x1, X2 = x2)
δ

.
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This can also be written as
∂E(Y |X1 = z, X2 = x2)

∂z

∣∣∣∣
z=x1

i.e., the partial derivative of E(Y |X1 = x1, X2 = x2) with respect to and evaluated at x1.

Intuitively, this is the rate of change in the expected response at a specific value of the explanatory variable —
i.e., the slope of the function at a specific point.

To compute this marginal effect we can either find the partial derivative analytically or approximate it
numerically using

E(Y |X1 = x1 + δ, X2 = x2) − E(Y |X1 = x1, X2 = x2)
δ

where δ set to a small value relative to x1 (this is called numerical differentiation).

Note that instantaneous marginal effects are only defined for continuous quantitative variables.

Example: Consider again the nonlinear regression model for expected weight as a function of days.
m <- nls(Weight ~ t1 + t2*2ˆ(-Days/t3), data = MASS::wtloss,

start = list(t1 = 90, t2 = 95, t3 = 120))

d <- data.frame(Days = seq(0, 250, by = 1))
d$yhat <- predict(m, newdata = d)

p <- ggplot(MASS::wtloss, aes(x = Days, y = Weight)) +
geom_point() + theme_classic() +
labs(y = "Weight (kg)", x = "Time (Days)") +
geom_line(aes(y = yhat), data = d) +
scale_x_continuous(breaks = c(50,100,150,200))

plot(p)
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We can estimate the instantaneous marginal effects at 50, 100, 150, and 200 days.
margeff(m, delta = 0.001,

a = list(Days = c(50,100,150,200) + 0.001),
b = list(Days = c(50,100,150,200)),
cnames = c("@50", "@100", "@150", "@200"))

estimate se lower upper tvalue df pvalue
@50 -0.393 0.00417 -0.401 -0.384 -94.1 49 4.93e-57
@100 -0.308 0.00183 -0.311 -0.304 -168.0 49 2.53e-69
@150 -0.241 0.00268 -0.246 -0.236 -89.8 49 4.94e-56
@200 -0.189 0.00367 -0.196 -0.181 -51.4 49 2.76e-44

Note: To estimate an instantaneous marginal effect, add a relatively small value of δ to the a variable, and
also specify this amount to the delta argument.

Example: Consider again the model for the insecticide data.
m <- glm(cbind(deaths, total-deaths) ~ log(deposit)
+ insecticide, family = binomial, data = insecticide)

d <- expand.grid(deposit = seq(2, 8, length = 100),
insecticide = unique(insecticide$insecticide))

d$phat <- predict(m, newdata = d, type = "response")

p <- ggplot(insecticide, aes(x = deposit, y = deaths/total)) +
geom_point() + facet_wrap(~ insecticide) +
geom_line(aes(y = phat), data = d) + theme_minimal() +
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labs(x = "Deposit (mg per 10 square cm)", y = "Proportion of Deaths")
plot(p)

g−BHC both DDT

2 4 6 8 2 4 6 8 2 4 6 8
0.00

0.25

0.50

0.75

1.00

Deposit (mg per 10 square cm)

P
ro

po
rt

io
n 

of
 D

ea
th

s

We can estimate the instantaneous marginal effect of deposit at a given amount of deposit, say 5 mg per 10
square cm.
margeff(m, delta = 0.001,

a = list(deposit = 5 + 0.001, insecticide = c("g-BHC","both","DDT")),
b = list(deposit = 5, insecticide = c("g-BHC","both","DDT")),
cnames = c("g-BHC","both","DDT"))

estimate se lower upper tvalue df pvalue
g-BHC 0.1268 0.00975 0.1077 0.1459 13.00 Inf 1.15e-38
both 0.0263 0.00428 0.0179 0.0347 6.15 Inf 7.94e-10
DDT 0.1332 0.01106 0.1115 0.1549 12.05 Inf 1.98e-33
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Note that the instantaneous effect of deposit depends on the deposit because the probability is not a linear
function of deposit.
margeff(m, delta = 0.001,

a = list(deposit = 2 + 0.001, insecticide = c("g-BHC","both","DDT")),
b = list(deposit = 2, insecticide = c("g-BHC","both","DDT")),
cnames = c("g-BHC","both","DDT"))

estimate se lower upper tvalue df pvalue
g-BHC 0.1444 0.0157 0.1135 0.175 9.17 Inf 4.84e-20
both 0.3208 0.0332 0.2557 0.386 9.65 Inf 4.75e-22
DDT 0.0805 0.0118 0.0574 0.104 6.82 Inf 8.88e-12
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Instantaneous Marginal Effects for Generalized Linear Models
Recall that in a GLM that E(Y ) = g−1(η) where η = β0 + β1x1 + · · · + βkxk. Consider a GLM where
ηi = β0 + β1xi1 + β2xi2. The instantaneous marginal effect of X1 at x1 is

∂E(Y |X1 = x1, X2 = x2)
∂x1

= ∂g−1(η)
∂x1

= ∂g−1(η)
∂η

∂η

∂x1
= ∂g−1(η)

∂η
β1

by the “chain rule” for (partial) derivatives.

Suppose that E(Y ) = eη (i.e., log link function) where η = β0 + β1x1 + β2x2. Then

∂g−1(η)
∂η

β1 = ∂eη

∂η
β1 = eηβ1 = E(Y )β1.

Suppose now that E(Y ) = eη/(1 + eη) (i.e., logit link function). Then

∂g−1(η)
∂η

β1 = ∂eη/(1 + eη)
∂η

β1 = eη

(1 + eη)2 β1 = E(Y )[1 − E(Y )]β1.

Suppose now that E(Y ) = η (e.g., identity link function). Then

∂g−1(η)
∂η

β1 = ∂η

∂η
β1 = β1.

Things get a little more complicated if X1 is a transformed explanatory variable or represents an interaction.

Suppose E(Y ) = β0 + β1 log(x1) + β2x2. Then

∂g−1(η)
∂η

∂η

∂x1
= ∂η

∂x1
= β1/x1.
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Suppose E(Y ) = β0 + β1x1 + β2x2
1. Then

∂g−1(η)
∂η

∂η

∂x1
= ∂η

∂x1
= β1 + 2β2x1.

Suppose E(Y ) = β0 + β1x1 + β2x2 + β3x1x2. Then

∂g−1(η)
∂η

∂η

∂x1
= ∂η

∂x1
= β1 + β3x2.

Fortunately, margeff does the calculus!

Discrete Marginal Effects as Percent Change
Consider a regression model with (without loss of generality) two explanatory variables, X1 and X2. The
percent change in the expected response when changing X1 from xb to xa when X2 = x2 is

E(Y |X1 = xa, X2 = x2) − E(Y |X1 = xb, X2 = x2)
E(Y |X1 = xb, X2 = x2) × 100%.

or, equivalently, [
E(Y |X1 = xa, X2 = x2)
E(Y |X1 = xb, X2 = x2) − 1

]
× 100%.

Note that the sign indicates if it is a percent increase or decrease.

Example: Consider again the weight loss model.
m <- nls(Weight ~ t1 + t2*2ˆ(-Days/t3), data = MASS::wtloss,

start = list(t1 = 90, t2 = 95, t3 = 120))

d <- data.frame(Days = seq(0, 250, by = 1))
d$yhat <- predict(m, newdata = d)

p <- ggplot(MASS::wtloss, aes(x = Days, y = Weight)) +
geom_point() + theme_classic() +
labs(y = "Weight (kg)", x = "Time (Days)") +
geom_line(aes(y = yhat), data = d) +
scale_x_continuous(breaks = c(50,100,150,200))

plot(p)
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Consider the percent change in expected weight from 50 to 100 days. This is

θ1 + θ22−100/θ3 − θ1 − θ22−50/θ3

θ1 + θ22−50/θ3
= θ22−100/θ3 − θ22−50/θ3

θ1 + θ22−50/θ3
.

We can estimate the percent change in expected weight from 50 to 100 days as follows.
margeff(m, a = list(Days = 100), b = list(Days = 50), type = "percent")

estimate se lower upper tvalue df pvalue
-10.8 0.0767 -10.9 -10.6 -140 49 1.67e-65

We can do it for several 50 day increments as well.
margeff(m, type = "percent",

a = list(Days = c(50,100,150,200)),
b = list(Days = c(0,50,100,150)),
cnames = c("0->50", "50->100", "100->150", "150->200"))

estimate se lower upper tvalue df pvalue
0->50 -12.09 0.1579 -12.41 -11.77 -76.5 49 1.17e-52
50->100 -10.77 0.0767 -10.93 -10.62 -140.4 49 1.67e-65
100->150 -9.46 0.0663 -9.59 -9.32 -142.7 49 7.49e-66
150->200 -8.18 0.1209 -8.42 -7.94 -67.7 49 4.66e-50

Example: Consider again the model for the insecticide data.
m <- glm(cbind(deaths, total-deaths) ~ log(deposit) + insecticide,

family = binomial, data = insecticide)
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d <- expand.grid(deposit = seq(2, 8, length = 100),
insecticide = levels(insecticide$insecticide))

d$phat <- predict(m, newdata = d, type = "response")

p <- ggplot(insecticide, aes(x = deposit, y = deaths/total)) +
geom_point() + facet_wrap(~ insecticide) +
geom_line(aes(y = phat), data = d) + theme_minimal() +
labs(x = "Deposit (mg per 10 square cm)", y = "Proportion of Deaths")

plot(p)
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We can estimate the percent change in the probability of death from 4 to 6 mg per 10 square cm.
margeff(m, type = "percent",

a = list(deposit = 6, insecticide = c("g-BHC","both","DDT")),
b = list(deposit = 4, insecticide = c("g-BHC","both","DDT")),
cnames = c("g-BHC","both","DDT"))

estimate se lower upper tvalue df pvalue
g-BHC 53.82 6.57 41.0 66.69 8.20 Inf 2.49e-16
both 6.37 1.11 4.2 8.55 5.74 Inf 9.60e-09
DDT 85.62 11.03 64.0 107.24 7.76 Inf 8.39e-15

Note that here the percent change depends on where we make the increment.
margeff(m, type = "percent",

a = list(deposit = 8, insecticide = c("g-BHC","both","DDT")),
b = list(deposit = 6, insecticide = c("g-BHC","both","DDT")),
cnames = c("g-BHC","both","DDT"))
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estimate se lower upper tvalue df pvalue
g-BHC 17.15 1.997 13.24 21.07 8.59 Inf 8.80e-18
both 1.76 0.363 1.05 2.47 4.87 Inf 1.14e-06
DDT 30.36 3.294 23.91 36.82 9.22 Inf 3.02e-20

We can also estimate the percent change in the probability of death between two insecticides.
margeff(m, type = "percent",

a = list(deposit = c(2,4,6,8), insecticide = "g-BHC"),
b = list(deposit = c(2,4,6,8), insecticide = "DDT"),
cnames = c("2","4","6","8"))

estimate se lower upper tvalue df pvalue
2 91.3 34.75 23.17 159.4 2.63 Inf 0.00862
4 54.7 19.04 17.41 92.0 2.87 Inf 0.00405
6 28.2 9.13 10.31 46.1 3.09 Inf 0.00200
8 15.2 4.90 5.61 24.8 3.10 Inf 0.00191

Discrete Marginal Effects as Multiplicative Factors
Consider a regression model with (without loss of generality) two explanatory variables, X1 and X2. A
multiplicative factor to describe the effect of changing X1 from xb to xa when X2 = x2 is

f = E(Y |X1 = xa, X2 = x2)
E(Y |X1 = xb, X2 = x2) ,

meaning that
E(Y |X1 = xa, X2 = x2) = f × E(Y |X1 = xb, X2 = x2).

Example: Consider again the model for the insecticide data.
m <- glm(cbind(deaths, total-deaths) ~ log(deposit) + insecticide,

family = binomial, data = insecticide)

d <- expand.grid(deposit = seq(2, 8, length = 100),
insecticide = levels(insecticide$insecticide))

d$phat <- predict(m, newdata = d, type = "response")

p <- ggplot(insecticide, aes(x = deposit, y = deaths/total)) +
geom_point() + facet_wrap(~ insecticide) +
geom_line(aes(y = phat), data = d) + theme_minimal() +
labs(x = "Deposit (mg per 10 square cm)", y = "Proportion of Deaths")

plot(p)
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We can estimate the factor by which we increase probability by increasing deposit from 4 to 6 mg per 10
square cm.
margeff(m, type = "factor",

a = list(deposit = 6, insecticide = c("g-BHC","both","DDT")),
b = list(deposit = 4, insecticide = c("g-BHC","both","DDT")),
cnames = c("g-BHC","both","DDT"))

estimate se lower upper tvalue df pvalue
g-BHC 1.54 0.0657 1.41 1.67 23.4 Inf 2.44e-121
both 1.06 0.0111 1.04 1.09 95.8 Inf 0.00e+00
DDT 1.86 0.1103 1.64 2.07 16.8 Inf 1.56e-63

We can also estimate the factor for comparing both insecticides with g-BHC only.
margeff(m, type = "factor",

a = list(deposit = c(2,4,6,8), insecticide = "both"),
b = list(deposit = c(2,4,6,8), insecticide = "g-BHC"),
cnames = c("2","4","6","8"))

estimate se lower upper tvalue df pvalue
2 4.99 0.8719 3.29 6.70 5.73 Inf 1.02e-08
4 1.92 0.1420 1.64 2.20 13.52 Inf 1.14e-41
6 1.33 0.0546 1.22 1.44 24.31 Inf 1.47e-130
8 1.15 0.0310 1.09 1.21 37.24 Inf 1.44e-303
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Using Different Kinds of Marginal Effects
Marginal effects give us a variety of ways to summarize the statistical relationship between a response variable
and an explanatory variable.

Example: Consider the following model for the ToothGrowth data.
m <- lm(len ~ log(dose) + supp, data = ToothGrowth)

d <- expand.grid(dose = seq(0.5, 2, length = 100), supp = c("OJ","VC"))
d$yhat <- predict(m, d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len)) +
geom_point() + facet_wrap(~ supp) +
geom_line(aes(y = yhat), data = d) +
labs(x = "Dose of Vitamin C (mg/day)", y = "Odontoblast Size") +
theme_minimal()

plot(p)
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We can use discrete marginal effects, such as when increasing dose from 0.5 to 1 mg/day.
margeff(m, cnames = c("OJ","VC"),

a = list(dose = 1.0, supp = c("OJ","VC")),
b = list(dose = 0.5, supp = c("OJ","VC")))

estimate se lower upper tvalue df pvalue
OJ 7.75 0.609 6.53 8.97 12.7 57 2.74e-18
VC 7.75 0.609 6.53 8.97 12.7 57 2.74e-18
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We can use instantaneous effects, such as the instantaneous effect at 1 mg/day.
margeff(m, cnames = c("OJ","VC"), delta = 0.001,

a = list(dose = 1 + 0.001, supp = c("OJ","VC")),
b = list(dose = 1, supp = c("OJ","VC")))

estimate se lower upper tvalue df pvalue
OJ 11.2 0.878 9.41 12.9 12.7 57 2.74e-18
VC 11.2 0.878 9.41 12.9 12.7 57 2.74e-18

We can use the percent change, such as when increasing dose from 0.5 to 1 mg/day.
margeff(m, cnames = c("OJ","VC"), type = "percent",

a = list(dose = 1.0, supp = c("OJ","VC")),
b = list(dose = 0.5, supp = c("OJ","VC")))

estimate se lower upper tvalue df pvalue
OJ 60.0 8.22 43.5 76.4 7.30 57 1.02e-09
VC 84.1 13.75 56.5 111.6 6.11 57 9.41e-08

We can use a multiplicative factor, such as when increasing dose form 0.5 to 1 mg/day.
margeff(m, cnames = c("OJ","VC"), type = "factor",

a = list(dose = 1.0, supp = c("OJ","VC")),
b = list(dose = 0.5, supp = c("OJ","VC")))

estimate se lower upper tvalue df pvalue
OJ 1.60 0.0822 1.44 1.76 19.5 57 7.56e-27
VC 1.84 0.1375 1.57 2.12 13.4 57 3.08e-19

Note: There are functions in other packages for estimating some kinds of marginal effects (e.g., see the
package marginaleffects).
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