
Friday, March 21

Over-dispersion
Over-dispersion can occur for generalized linear models that assume a Poisson or binomial distribution for
the response variable.

When we specify a distribution in a generalized linear model, what we are actually specifying is the variance
structure

Var(Yi) = ϕV [E(Yi)],
where ϕ is the dispersion parameter and V is the variance function.

Over-dispersion is when
Var(Yi) > ϕV [E(Yi)],

and underdispersion is when
Var(Yi) < ϕV [E(Yi)].

Over-dispersion is fairly common in practice, but under-dispersion is relatively rare.

Over-dispersion in Poisson Regression

If Yi has a Poisson distribution, then
Var(Yi) = E(Yi),

so that it is implicitly assumed that ϕ = 1 and V (z) = z. Over-dispersion occurs if

Var(Yi) > E(Yi).

Over-dispersion in Binomial Regression

If Ci has a binomial distribution, and Yi = Ci/mi, then

Var(Yi) = E(Yi)[1 − E(Yi)]/mi,

so that it is implicitly assumed that ϕ = 1 and V (z) = z(1 − z)/mi. over-dispersion occurs if

Var(Yi) > E(Yi)[1 − E(Yi)]/mi.

In general, failing to account for over-dispersion (or a misspefication of the variance structure in general) may
yield incorrect standard errors (usually too small in the case of over-dispersion), leading to incorrect test
statistics and confidence intervals.

Causes of Over-dispersion
1. Wrong assumed distribution for the response variable.

2. Unobserved explanatory variables that vary over observations.

Note: A misspecified mean structure (e.g., failing to transform an explanatory variable or omitting a strong
interaction) may appear as overdisperson.

Example: Consider the following data from an experiment that investigated the proportion of rotifers of two
species remaining in suspension in different solution densities after being put into a centrifuge.
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myrotifer <- trtools::rotifer

p <- ggplot(myrotifer, aes(x = density, y = y/total)) +
geom_point() + facet_wrap(~species) +
labs(y = "Proportion of Rotifers\n Remaining in Suspension",

x = "Density of Solution") + theme_minimal()
plot(p)
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Logistic regression might be a reasonable model here.
m <- glm(cbind(y, total - y) ~ species * density,

family = binomial, data = myrotifer)

d <- expand.grid(species = c("kc","pm"), density = seq(1.02, 1.07, length = 100))
d$yhat <- predict(m, newdata = d, type = "response")

p <- p + geom_line(aes(y = yhat), data = d)
plot(p)
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Do these data exhibit over-dispersion for this model?

Detection of Over-dispersion
Standardized residuals can be used to detect over-dispersion. There are several types for GLMs.

1. Pearson residuals. Pearson residuals are defined as

yi − ŷi√
V̂ar(Yi)

.

Dividing a Pearson residual by another term to account for the variance ŷi creates a standardized
Pearson residual. These are obtained using rstandard(m, type = "pearson").

2. Deviance residuals. The residual deviance can be decomposed into a per-observation contribution so
that D =

∑n
i=1 di. Then the residual deviance is defined as

sign(yi − ŷi)
√

di,

where

sign(z) =


1, if z > 0,

0, if z = 0,

−1, if z < 0.

Dividing a deviance residual by another term to account for the variance ŷi creates a standardized
deviance residual. These are obtained using rstandard(m, type = "deviance"). A numerical approx-
imation to these residuals obtained when omitting the observation can be obtained using rstudent(m).

3. Studentized residuals. The function rstudent will produce approximate studentized residuals for GLMs.
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Comment: If the model is correct the residuals might be approximately normally distributed with a mean
of zero and standard deviation of one (i.e., “standard normal”), so an excess of values greater than two (in
absolute value) may indicate over-dispersion or some other problem with the model. But with very coarse
data (e.g., very small counts in a Poisson regression model or proportions with small mi in a logistic regression
model), the distribution of these residuals is not approximately normal.

Example: Let’s look at the residuals for the rotifer model.
par(mfcol = c(1,3))
plot(predict(m), rstandard(m, type = "pearson"), ylim = c(-10, 7), main = "Pearson")
abline(h = c(-2,2), lty = 2)
plot(predict(m), rstandard(m, type = "deviance"), ylim = c(-10, 7), main = "Deviance")
abline(h = c(-2,2), lty = 2)
plot(predict(m), rstudent(m), ylim = c(-10, 7), main = "Studentized")
abline(h = c(-2,2), lty = 2)
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Is there an explanation of the over-dispersion?

Another metric is to compare the residual deviance to the residual degrees of freedom in a GLM with a
response variable with either a Poisson or binomial distribution. If the model is (approximately) correct then
the ratio of the residual deviance to the residual degrees of freedom is approximately one.

Example: Consider the residual deviance and residual degrees of freedom for the rotifer model.
summary(m)

Call:
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glm(formula = cbind(y, total - y) ~ species * density, family = binomial,
data = myrotifer)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -114.35 4.03 -28.35 <2e-16 ***
speciespm 4.63 6.60 0.70 0.48
density 108.75 3.86 28.19 <2e-16 ***
speciespm:density -3.08 6.33 -0.49 0.63
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3180.99 on 39 degrees of freedom
Residual deviance: 434.02 on 36 degrees of freedom
AIC: 596.6

Number of Fisher Scoring iterations: 5

If the model is correct and there is no over-dispersion, the residual deviance has approximate a χ2 distribution
with degrees of freedom equal to the residual degrees of freedom. We can use this as an informal test for
over-dispersion.
f <- function(x) dchisq(x, 36)
curve(f, from = 0, to = 500, n = 1000)
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Residuals are more informative, but the residual deviance is a quick way to check to see if over-dispersion
may be an issue.
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Note: For logistic regression, over-dispersion cannot be diagnosed in this way for binary data (and the residual
deviance may not be reliable if the mi are very small).

Example: Let’s look again a the Poisson regression model for the trawling data.
library(COUNT)
data(fishing)

m <- glm(totabund ~ period * meandepth + offset(log(sweptarea)),
family = poisson, data = fishing)

d <- expand.grid(sweptarea = 1, period = levels(fishing$period),
meandepth = seq(800, 5000, length = 100))

d$yhat <- predict(m, newdata = d, type = "response")

p <- ggplot(fishing, aes(x = meandepth, y = totabund/sweptarea)) +
geom_point(alpha = 0.5) + facet_wrap(~ period) + theme_minimal() +
labs(x = "Mean Trawl Depth (meters)",

y = "Fish Caught Per Square Meter Trawled") +
geom_line(aes(y = yhat), data = d)

plot(p)
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Might there be over-dispersion here?
summary(m)

Call:
glm(formula = totabund ~ period * meandepth + offset(log(sweptarea)),
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family = poisson, data = fishing)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.42e+00 1.49e-02 -229.67 <2e-16 ***
period2000-2002 -7.71e-01 2.97e-02 -25.94 <2e-16 ***
meandepth -9.71e-04 7.96e-06 -121.94 <2e-16 ***
period2000-2002:meandepth 1.32e-04 1.52e-05 8.65 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 46176 on 146 degrees of freedom
Residual deviance: 14982 on 143 degrees of freedom
AIC: 15962

Number of Fisher Scoring iterations: 5
fishing$eta <- predict(m)
fishing$res <- rstudent(m)

p <- ggplot(fishing, aes(x = eta, y = res)) + theme_minimal() +
geom_point(alpha = 0.25) +
labs(x = "Predicted Value (log scale)",

y = "Studentized Residual") +
geom_hline(yintercept = c(-2, 2), linetype = 3)

plot(p)
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Over-dispersion is not the only issue here. The variance of the residuals is not constant.

Solutions to Over-dispersion
There are several potential solutions to over-dispersion.

1. Quasi-likelihood. Specify a variance structure other than the one implied by a specified distribution.

2. Specify a different distribution (possibly outside the exponential family).

3. Use a robust estimator of the standard errors (i.e., heteroscedastic consistent standard errors).

Quasi-Likelihood Solutions to Over-dispersion

The Poisson and binomial distributions assume the variance structures

Var(Yi) = ϕE(Yi) and Var(Yi) = ϕE(Yi)[1 − E(Yi)]/mi,

respectively, where the dispersion parameter is fixed at ϕ = 1. One solution is to allow ϕ to be an unknown
parameter to “relax” the variance structure and allow the variance to be larger than it would be for a Poisson
or binomial distribution. The dispersion parameter can be estimated. R uses

ϕ̂ = 1
n − p

n∑
i=1

(yi − ŷi)2

V(ŷi)
,

which is analogous to the estimate of σ2 in a normal linear model. This is a quasi-likelihood approach because
the variance structures with ϕ ̸= 1 do not correspond to a binomial or Poisson distribution. This kind of
quasi-likelihood can be done with glm by using quasipoisson or quasibinomial instead of poisson or
binomial, respectively, when specifying the family argument.

Example: Consider again the rotifer model.
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m.quasi <- glm(cbind(y, total - y) ~ species + density + species:density,
family = quasibinomial, data = myrotifer)

plot(predict(m.quasi), rstudent(m.quasi), main = "Residual Plot")
abline(h = c(-2,2), lty = 2)
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Note: You cannot compare the residual deviance to the residual degrees of freedom as a diagnostic to
determine if using quasi-likelihood was successful, but standardized residuals are still appropriate.

How does this impact our inferences?
m.binom <- glm(cbind(y, total - y) ~ species + density + species:density,

family = binomial, data = myrotifer)
cbind(summary(m.binom)$coefficients, confint(m.binom))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) -114.35 4.03 -28.345 9.53e-177 -122.42 -106.60
speciespm 4.63 6.60 0.702 4.83e-01 -8.46 17.43
density 108.75 3.86 28.191 7.53e-175 101.33 116.46
speciespm:density -3.08 6.33 -0.486 6.27e-01 -15.35 9.49
cbind(summary(m.quasi)$coefficients, confint(m.quasi))

9



Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
(Intercept) -114.35 15.0 -7.647 4.74e-09 -146.0 -87.0
speciespm 4.63 24.5 0.189 8.51e-01 -46.2 51.3
density 108.75 14.3 7.606 5.36e-09 82.6 139.0
speciespm:density -3.08 23.5 -0.131 8.96e-01 -47.8 45.7
# odds ratios for effect of a 0.01 unit increase in density
trtools::contrast(m.binom,

a = list(species = c("kc","pm"), density = 0.02),
b = list(species = c("kc","pm"), density = 0.01),
cnames = c("kc","pm"), tf = exp)

estimate lower upper
kc 2.97 2.75 3.20
pm 2.88 2.61 3.17
# odds ratios for effect of a 0.01 unit increase in density
trtools::contrast(m.quasi,

a = list(species = c("kc","pm"), density = 0.02),
b = list(species = c("kc","pm"), density = 0.01),
cnames = c("kc","pm"), tf = exp)

estimate lower upper
kc 2.97 2.22 3.96
pm 2.88 1.97 4.20

Note that point estimates are unchanged, but standard errors, tests, and confidence intervals are affected.

Example: Now let’s try the same approach with trawling data.
m.quasi <- glm(totabund ~ period * meandepth + offset(log(sweptarea)),

family = quasipoisson, data = fishing)
plot(predict(m.quasi), rstudent(m.quasi), main = "Residual Plot")
abline(h = c(-2,2), lty = 2)
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That was maybe somewhat less successful. Note the “megaphone” pattern. The assumed variance structure is

Var(Yi) = ϕE(Yi).

We could relax this by assuming instead

Var(Yi) = ϕE(Yi)p.

for some p > 1. If p = 1, 2, or 3 then we can use quasi. Here we are using it for p = 2.
m.quasi <- glm(totabund ~ period * meandepth + offset(log(sweptarea)),

family = quasi(link = "log", variance = "muˆ2"), data = fishing)
summary(m.quasi)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.25e+00 1.59e-01 -20.418 3.19e-44
period2000-2002 -6.04e-01 2.72e-01 -2.221 2.79e-02
meandepth -1.04e-03 5.87e-05 -17.740 5.99e-38
period2000-2002:meandepth 7.27e-05 9.99e-05 0.728 4.68e-01
plot(predict(m.quasi), rstudent(m.quasi), main = "Residual Plot")
abline(h = c(-2,2), lty = 2)
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Note that quasi(link = "log", variance = "mu") is the same as quasipoisson. For more options
consider family = tweedie. The tweedie family defines power functions for link and variance functions of
the form

E(Yi)q = ηi and Var(Yi) = ϕE(Yi)p,

where E(Yi)0 ≡ log E(Yi) when using tweedie (not mathematically of course — this is just for interface
purposes). For example, to replicate the quasi-likelihood model above we can use the following.
library(statmod) # for tweedie "family"
m.tweedie <- glm(totabund ~ period * meandepth + offset(log(sweptarea)),

family = tweedie(link.power = 0, var.power = 2), data = fishing)
summary(m.tweedie)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.25e+00 1.59e-01 -20.418 3.19e-44
period2000-2002 -6.04e-01 2.72e-01 -2.221 2.79e-02
meandepth -1.04e-03 5.87e-05 -17.740 5.99e-38
period2000-2002:meandepth 7.27e-05 9.99e-05 0.728 4.68e-01

The powers p and q are not required to be integers when using tweedie.

Whether or not we use quasi-likelihood will affect the standard errors, as well as tests and confidence intervals.
Failing to account for substantial over-dispersion can result in biased standard errors, and thus incorrect tests
and confidence intervals. Estimates of parameters (of functions thereof such as what we get from contrast)
may or may not change, depending on the variance structure.
m.poisson <- glm(totabund ~ period * meandepth + offset(log(sweptarea)),

family = poisson, data = fishing)
# rate ratios for year
trtools::contrast(m.poisson,

a = list(sweptarea = 1, meandepth = c(1000,2000,3000,4000,5000), period = "2000-2002"),
b = list(sweptarea = 1, meandepth = c(1000,2000,3000,4000,5000), period = "1977-1989"),
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cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)

estimate lower upper
1000m 0.528 0.510 0.546
2000m 0.602 0.586 0.618
3000m 0.687 0.656 0.719
4000m 0.784 0.729 0.842
5000m 0.894 0.809 0.989
trtools::contrast(m.tweedie,

a = list(sweptarea = 1, meandepth = c(1000,2000,3000,4000,5000), period = "2000-2002"),
b = list(sweptarea = 1, meandepth = c(1000,2000,3000,4000,5000), period = "1977-1989"),
cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)

estimate lower upper
1000m 0.588 0.405 0.854
2000m 0.632 0.487 0.821
3000m 0.680 0.517 0.893
4000m 0.731 0.491 1.090
5000m 0.786 0.446 1.387

Inferences With Quasi-Likelihood
Using quasi-likelihood instead of maximum likelihood changes how inferences are made in several ways.

1. The standard errors are multiplied by
√

ϕ̂. If ϕ̂ > 1 (which it probably is if over-dispersion is present)
then the standard errors will be larger (and thus failing to account for over-dispersion leads us to usually
underestimate them). Note that this adjustment is made automatically when using quasi-likelihood.

2. Wald confidence intervals and tests for a single parameter or function of parameters are based on the t
distribution rather than the standard normal distribution. The t distribution is believed to provide
more accurate results, although it is still an approximation.

3. Using confint or anova use the F distribution rather than the χ2 distribution. The underlying test
statistic is similar to the F test statistic used in normal linear models. When using anova you should
use test = "F" rather than test = "LRT" if you are using quasi-likelihood.

4. Function in emmeans do not adjust the degrees of freedom for estimating the dispersion parameter
when using quasi-likelihood. This does not make much difference unless n is small. But you can
specify the it manually via the df argument (use the degrees of freedom for the residual deviance
from summary or extract it with modelname$df.residual). But contrast and lincon do not require
manual specification, although you can via the df argument for those functions.
library(emmeans)
m.quasi <- glm(cbind(y, total - y) ~ species + density + species:density,

family = quasibinomial, data = myrotifer)
trtools::contrast(m.quasi,

a = list(species = c("kc","pm"), density = 0.02),
b = list(species = c("kc","pm"), density = 0.01),
cnames = c("kc","pm"), tf = exp)

estimate lower upper
kc 2.97 2.22 3.96
pm 2.88 1.97 4.20
pairs(emmeans(m.quasi, ~density|species, at = list(density = c(0.02, 0.01)),

type = "response"), infer = TRUE) # wrong df
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species = kc:
contrast odds.ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
density0.02 / density0.01 2.97 0.424 Inf 2.24 3.93 1 7.610 <.0001

species = pm:
contrast odds.ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
density0.02 / density0.01 2.88 0.535 Inf 2.00 4.14 1 5.680 <.0001

Confidence level used: 0.95
Intervals are back-transformed from the log odds ratio scale
Tests are performed on the log odds ratio scale
pairs(emmeans(m.quasi, ~density|species, at = list(density = c(0.02, 0.01)),

type = "response"), infer = TRUE, df = m.quasi$df.residual) # correct df

species = kc:
contrast odds.ratio SE df lower.CL upper.CL null t.ratio p.value
density0.02 / density0.01 2.97 0.424 36 2.22 3.96 1 7.610 <.0001

species = pm:
contrast odds.ratio SE df lower.CL upper.CL null t.ratio p.value
density0.02 / density0.01 2.88 0.535 36 1.97 4.20 1 5.680 <.0001

Degrees-of-freedom method: user-specified
Confidence level used: 0.95
Intervals are back-transformed from the log odds ratio scale
Tests are performed on the log odds ratio scale

Admittedly it does not make much difference here.

Misspecified Mean Structures and over-dispersion
A poorly specified mean structure may be mistaken for over-dispersion.
library(trtools)
ceriodaphniastrain$strain <- factor(ceriodaphniastrain$strain, labels = c("a","b"))
m <- glm(count ~ strain + sqrt(concentration), family = poisson, data = ceriodaphniastrain)
summary(m)

Call:
glm(formula = count ~ strain + sqrt(concentration), family = poisson,

data = ceriodaphniastrain)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.5284 0.0400 113.08 < 2e-16 ***
strainb -0.2750 0.0484 -5.68 1.3e-08 ***
sqrt(concentration) -1.6576 0.0474 -34.99 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1359.38 on 69 degrees of freedom
Residual deviance: 164.28 on 67 degrees of freedom
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AIC: 493.9

Number of Fisher Scoring iterations: 4
plot(predict(m), rstudent(m))
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m <- glm(count ~ strain + concentration, family = poisson, data = ceriodaphniastrain)
summary(m)

Call:
glm(formula = count ~ strain + concentration, family = poisson,

data = ceriodaphniastrain)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.4546 0.0391 113.82 < 2e-16 ***
strainb -0.2750 0.0484 -5.68 1.3e-08 ***
concentration -1.5431 0.0466 -33.11 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1359.381 on 69 degrees of freedom
Residual deviance: 86.376 on 67 degrees of freedom
AIC: 416

Number of Fisher Scoring iterations: 4
plot(predict(m), rstudent(m))
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Quasi-Likelihood and Nonlinear Regression
Quasi-likelihood for a GLM is essentially the same as using (nonlinear) regression with iteratively weighted
least squares to account for heteroscedasticity. The weights are

wi = 1
V (ŷi)

,

where V is the variance function.

Example: Consider the model for the trawling data where the variance is proportional to E(Yi)2. To
estimate this model using iteratively weighted least squares we use weights of wi = 1/E(Yi)2.
m.quasi <- glm(totabund ~ period * meandepth + offset(log(sweptarea)),

family = quasi(link = "log", variance = "muˆ2"), data = fishing)
summary(m.quasi)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.25e+00 1.59e-01 -20.418 3.19e-44
period2000-2002 -6.04e-01 2.72e-01 -2.221 2.79e-02
meandepth -1.04e-03 5.87e-05 -17.740 5.99e-38
period2000-2002:meandepth 7.27e-05 9.99e-05 0.728 4.68e-01
fishing$w <- 1
for (i in 1:10) {

m.iwls <- nls(totabund ~ exp(b0 + b1*(period == "2000-2002") + b2*meandepth +
b3*(period == "2000-2002")*meandepth + log(sweptarea)), data = fishing,
start = list(b0 = -3, b1 = -0.6, b2 = 0, b3 = 0), weights = w)

fishing$w <- 1 / predict(m.iwls)ˆ2
}
summary(m.iwls)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 -3.25e+00 1.59e-01 -20.418 3.19e-44
b1 -6.04e-01 2.72e-01 -2.221 2.79e-02
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b2 -1.04e-03 5.87e-05 -17.740 5.99e-38
b3 7.27e-05 9.99e-05 0.728 4.68e-01

Example: Consider the model for the rotifer data. Here the variance is proportional to E(Yi)[1 − E(Yi)i]/mi

(recall that mi is the “total possible” for the counts). To estimate this model using iteratively weighted least
squares we use weights of

wi = mi

E(Yi)[1 − E(Yi)]
.

m.binomial <- glm(cbind(y, total - y) ~ species * density,
family = quasibinomial, data = myrotifer)

summary(m.binomial)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -114.35 15.0 -7.647 4.74e-09
speciespm 4.63 24.5 0.189 8.51e-01
density 108.75 14.3 7.606 5.36e-09
speciespm:density -3.08 23.5 -0.131 8.96e-01
myrotifer$w <- 1
for (i in 1:20) {

m <- nls(y/total ~ plogis(b0 + b1*(species == "pm") + b2*density +
b3*(species == "pm")*density), data = myrotifer, weights = w,
start = list(b0 = -114, b1 = 4.6, b2 = 109, b3 = -3))

myrotifer$yhat <- predict(m)
myrotifer$w <- myrotifer$total / (myrotifer$yhat * (1 - myrotifer$yhat))

}
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 -114.34 14.9 -7.649 4.72e-09
b1 4.61 24.5 0.189 8.51e-01
b2 108.73 14.3 7.607 5.34e-09
b3 -3.06 23.5 -0.131 8.97e-01

Note that plogis is the function ex/(1 + ex). The model can be written as

E(Yi) = eηi

1 + eηi

where Yi is the observed proportion, and

ηi = β0 + β1si + β2di + β3sidi,

where si is an indicator variable for the pm species, and di is the density.

Using iteratively weighted least squares is not necessary if we can use quasi or tweedie, but it is a useful
option for cases where the variance structure is outside what can be done with quasi or tweedie (although
one can program new variance structures).
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