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Likelihood Functions
The likelihood function computes the likelihood of y1, y2, . . . , yn as a function of all unknown parameters.
If the distribution of the response variable is discrete then the likelihood is the same as the probability of
y1, y2, . . . , yn.

Example: Suppose Yi has a Poisson distribution such that

P (Yi = y) = λy
i e−λi

y!

where
λi = exp(β0 + β1xi),

so that the model for Yi is a Poisson regression model. The likelihood function is then

L(β0, β1) = λy1
1 e−λ1

y1! × λy2
2 e−λ2

y2! × · · · × λyn
n e−λn

yn! ,

or

L(β0, β1) =
n∏

i=1

λyi

i e−λi

yi!
,

where, again,
λi = exp(β0 + β1xi).

Example: Suppose Yi has a binomial distribution such that

P (Yi = y) = mi!
yi!(mi − yi)!

py
i (1 − pi)mi−y,

where
pi = eβ0+β1xi

1 + eβ0+β1xi
,

so that the model for Yi is a logistic regression model. The likelihood function is then

L(β0, β1) = m1!
y1!(m1 − y1)!p

y1
1 (1−p1)m1−y1× m2!

y2!(m2 − y2)!p
y2
2 (1−p2)m2−y2×· · ·× mn!

yn!(mn − yn)!p
yn
n (1−pn)mn−yn

or

L(β0, β1) =
n∏

i=1

mi!
yi!(mi − yi)!

pyi

i (1 − pi)mi−yi ,

where, again,

pi = eβ0+β1xi

1 + eβ0+β1xi
.

Note: If the response variable is discrete as it is in Poisson and logistic regression, then the likelihood function
gives the probability of the observed responses as a function of the model parameters.

Example: Suppose Yi has a normal distribution where the probability density function of Yi is

f(y) = 1
σ

√
2π

e− (y−µi)2

2σ2 ,
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where
µi = β0 + β1xi,

so that the model for Yi is a normal linear regression model. The likelihood function is then

L(β0, β1, σ2) =
n∏

i=1

1√
2πσ2

e− (yi−µi)2

2σ2 .

Frequently we use the log of the likelihood function or the log-likelihood function.

Example: The log-likelihood for the Poisson regression model above is

log L(β0, β1) =
n∑

i=1
log

(
λyi

i e−λi

yi!

)
=

n∑
i=1

yi log(λi) −
n∑

i=1
λi −

n∑
i=1

log(yi!).

Example: The log-likelihood for the normal regression model above is

log L(β0, β1, σ2) = −n

2 log(2π) − n log(σ) − 1
2σ2

n∑
i=1

(yi − µi)2.

Maximum Likelihood Estimation
The maximum likelihood estimates (MLE) of the model parameters is those values of the parameters that
maximize the likelihood of the data — i.e., the parameter values that make the values of y1, y2, . . . , yn we
observed the most likely values to have occurred. Finding these estimates is a optimization problem — i.e.,
find the values of the parameters that maximize the likelihood (or log-likelihood).

Example: In the normal linear model above, it can be shown that the MLEs of β0 and β1 are those values
that minimize

n∑
i=1

(yi − µi)2

where µi = β0 + β1xi. So the MLEs are also the least squares estimators. But the MLE of σ2 is

σ̂2 =
∑n

i=1(yi − ŷi)2

n

where ŷi = β̂0 + β̂1xi. But we typically use the unbiased estimator

σ̂2 =
∑n

i=1(yi − ŷi)2

n − p
,

where p is the number of βj parameters (p = 2 in the model above).

Except in the case of normal linear models and a few very simple nonlinear models, MLEs must be found
numerically using iterative algorithms (similar to those used in nonlinear regression).

Inference Based On Maximum Likelihood
It is usually not possible to determine an exact method of estimating the standard error of a MLE, computing
a confidence interval based on ML, or conducting a significance test based on ML. However there exist several
asymptotic methods that give approximate results.

1. Likelihood ratio tests and profile likelihood confidence intervals.

2. Wald tests and confidence intervals.

3. Score (Lagrange multiplier) tests (not discussed).
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Likelihood Ratio Tests

The likelihood ratio test statistic is

2 log (L/Ln) = 2 log(L) − 2 log(Ln) a∼ χ2
(r),

where L and Ln are the likelihood functions for the model and the null model, respectively, evaluated at the
MLEs, and r is the degrees of freedom.

Example: Consider the Poisson regression model for ceriodaphniastrain and the null hypothesis that
there is no difference in the expected number of daphnia between the two strains when controlling for dose.
library(trtools) # for ceriodaphniastrain data
ceriodaphniastrain$strain <- factor(ceriodaphniastrain$strain, labels = c("a","b"))

m <- glm(count ~ strain + concentration, family = poisson, data = ceriodaphniastrain)
m.null <- glm(count ~ concentration, family = poisson, data = ceriodaphniastrain)

anova(m.null, m, test = "LRT") # has very little to do with ANOVA

Analysis of Deviance Table

Model 1: count ~ concentration
Model 2: count ~ strain + concentration

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 68 119.0
2 67 86.4 1 32.6 1.1e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The “residual deviance” (or just “deviance”) is related to the log-likelihood of the model. It is defined as

D = 2 log Ls − 2 log L ≥ 0,

where L and Ls are the likelihoods of the model in question and a “saturated” model, respectively. The
saturated model is a “best possible” model where each unique combination of covariate values is a distinct
level of a factor. Thus the deviance can be viewed in a way as the “lack of fit” of the model to the data. The
residual deviance can sometimes be obtained using the summary or deviance functions.
summary(m) # shows residual deviance

Call:
glm(formula = count ~ strain + concentration, family = poisson,

data = ceriodaphniastrain)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.4546 0.0391 113.82 < 2e-16 ***
strainb -0.2750 0.0484 -5.68 1.3e-08 ***
concentration -1.5431 0.0466 -33.11 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1359.381 on 69 degrees of freedom
Residual deviance: 86.376 on 67 degrees of freedom
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AIC: 416

Number of Fisher Scoring iterations: 4
deviance(m) # extracts only residual deviance

[1] 86.4

The likelihood ratio test statistic can be expressed in terms of the (residual) deviance of the model and the
null model.

2(logs − log Ln)︸ ︷︷ ︸
Dn

− 2(logs − log L)︸ ︷︷ ︸
D

= 2 log L − 2 log Ln
a∼ χ2

(r),

where D and Dn are the deviance of the model and null model, respectively. The degrees of freedom (r) is
the difference in the residual degrees of freedom between the two models. The residual degrees of freedom
equal n minus the number of parameters for the expected response.

The following shows how the deviance relates to what is done by anova.
anova(m.null, m, test = "LRT")

Analysis of Deviance Table

Model 1: count ~ concentration
Model 2: count ~ strain + concentration

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 68 119.0
2 67 86.4 1 32.6 1.1e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
deviance(m) # (residual) deviance of model

[1] 86.4
deviance(m.null) # (residual) deviance of null model

[1] 119
deviance(m.null) - deviance(m) # test statistic

[1] 32.6

Note: For models where Yi is assumed to have a normal distribution, residual deviance essentially becomes
the residual (error) sums of squares. Some in some sense the “analysis of deviance” can be viewed as a
generalization of the “analysis of variance” in linear models.

Profile Likelihood Confidence Intervals

Consider a significance test with hypotheses H0 : θ = θ0 versus Ha : θ ̸= θ0 where θ is some parameter of the
model. A confidence interval (θl, θh) for θ can be used to conduct the test.

1. If θ0 is in (θl, θh), do not reject H0.

2. If θ0 is not in (θl, θh), reject H0

Thus a confidence interval for θ can be defined as all the values of θ0 that are not rejected by a test of
H0 : θ = θ0 versus Ha : θ ̸= θ0.

A profile likelihood confidence interval is a confidence interval based on the likelihood ratio test. It is the
set/range of all values of a parameter that would not be rejected by the likelihood ratio test. Example:
Consider again the ceriodaphniastrain data.
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confint(m)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 4.38 4.53
strainb -0.37 -0.18
concentration -1.63 -1.45

For glm objects (and some others we will talk about in the future) confint will compute profile likelihood
confidence intervals by default. A similar approach is used by nls, and glm when using quasi-likelihood
(more on that later), but is based on a F test statistic.

Wald Tests and Confidence Intervals

Wald tests and confidence intervals are based on the fact that MLEs have approximately normal sampling
distributions. The Wald test statistic for a parameter βj is

z = β̂j − βj

ŜE(β̂j)
a∼ N(0,1) or z2 =

[
β̂j − βj

ŜE(β̂j)

]2
a∼ χ2

(1),

where βj is the value hypothesized by the null (frequently βj = 0). The Wald confidence interval for βj is

β̂j ± z × ŜE(β̂j).

We can also apply this to a linear combinations of parameters by replacing βj and β̂j with ℓ and ℓ̂, respectively.

Wald test statistics and confidence intervals are reported by contrast, lincon, glmint, nlsint from the
trtools package, and the functions in the emmeans package. The summary function reports Wald test
statistics.

Note: In some cases a t-distribution is used as the approximate distribution of a Wald test statistic, and is
also used when calibrating a confidence interval. In generalized linear models this usually happens for models
in which we need to estimate the dispersion parameter. We do not need to estimate the dispersion parameter
for Poisson or binomial/logistic regression.

Example: Consider again the ceriodaphniastrain data.
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.455 0.0391 113.82 0.00e+00
strainb -0.275 0.0484 -5.68 1.31e-08
concentration -1.543 0.0466 -33.11 2.06e-240
lincon(m)

estimate se lower upper tvalue df pvalue
(Intercept) 4.455 0.0391 4.38 4.53 113.82 Inf 0.00e+00
strainb -0.275 0.0484 -0.37 -0.18 -5.68 Inf 1.31e-08
concentration -1.543 0.0466 -1.63 -1.45 -33.11 Inf 2.06e-240
trtools::contrast(m,

a = list(strain = "a", concentration = c(0,1,2)),
b = list(strain = "b", concentration = c(0,1,2)),
cnames = c("0%","1%","2%"))

estimate se lower upper tvalue df pvalue
0% 0.275 0.0484 0.18 0.37 5.68 Inf 1.31e-08
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1% 0.275 0.0484 0.18 0.37 5.68 Inf 1.31e-08
2% 0.275 0.0484 0.18 0.37 5.68 Inf 1.31e-08
trtools::contrast(m, tf = exp,

a = list(strain = "a", concentration = c(0,1,2)),
b = list(strain = "b", concentration = c(0,1,2)),
cnames = c("0%","1%","2%"))

estimate lower upper
0% 1.32 1.2 1.45
1% 1.32 1.2 1.45
2% 1.32 1.2 1.45
library(emmeans)
pairs(emmeans(m, ~strain|concentration,

at = list(concentration = c(0,1,2))),
type = "response", infer = TRUE)

concentration = 0:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
a / b 1.32 0.0637 Inf 1.2 1.45 1 5.680 <.0001

concentration = 1:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
a / b 1.32 0.0637 Inf 1.2 1.45 1 5.680 <.0001

concentration = 2:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
a / b 1.32 0.0637 Inf 1.2 1.45 1 5.680 <.0001

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

For Wald tests involving joint hypotheses, you can use the waldtest function from the lmtest package which
works similarly to how the anova function can be used for likelihood ratio tests.
m <- glm(count ~ strain * concentration, family = poisson, data = ceriodaphniastrain)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.481 0.0435 103.01 0.00e+00
strainb -0.337 0.0670 -5.02 5.11e-07
concentration -1.598 0.0624 -25.59 1.86e-144
strainb:concentration 0.125 0.0939 1.34 1.82e-01
m.null <- glm(count ~ concentration, family = poisson, data = ceriodaphniastrain)
summary(m.null)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.33 0.0331 130.7 0.00e+00
concentration -1.54 0.0466 -33.1 2.06e-240
library(lmtest)
waldtest(m.null, m, test = "Chisq")

Wald test
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Model 1: count ~ concentration
Model 2: count ~ strain * concentration

Res.Df Df Chisq Pr(>Chisq)
1 68
2 66 2 34 4.1e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Likelihood Ratio Versus Wald

The two methods are equivalent asymptotically and tend to produce relatively similar results for larger n, but
for smaller n they may produce somewhat different results.

1. Likelihood ratio tests/intervals are generally more accurate than Wald tests/intervals. The latter
assumes that the sampling distribution of the estimator is normal. Likelihood ratio tests/intervals
assume that the sampling distribution of the likelihood ratio test statistic has a χ2 distribution. The
latter is easier to meet since it does not depend on the parameterization of the model.

2. Likelihood ratio tests/intervals are a bit more computationally expensive and difficult to program in
the case of functions of model parameters (e.g., linear combinations where we use lincon, contrast,
or functions from the emmeans package).

3. Wald tests/intervals can be used in cases where a likelihood function is not specified because we do not
or cannot assume a particular distribution for the response variable.

Assumptions
For inferences based on maximum likelihood to be correct, we are assuming we have the correct likelihood
function. It is useful to note three aspects of the likelihood function where we need to be correct.

1. The distribution of the response variable.

2. The relationship between the parameter(s) of the distribution and the explanatory variable(s).

3. The independence of the n observations.

Interestingly, for GLMs the distribution actually isn’t something that we need to be correct about, provided
that we are correct about the following:

1. E(Yi) is related to the explanatory variables in the assumed way — e.g., g[E(Yi)] = β0 + β1xi1 + · · · +
βkxik.

2. Var(Yi) depends on E(Yi) in the assumed away — i.e., through the variance structure Var(Yi) =
ϕV [E(Yi)].

3. The observations are independent (although there are some special cases where we can violate this
assumption and still get “asymptotically correct” inferences).

When you specify a distribution via the family argument to the glm function, all that matters is the variance
structure implied by that family.
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