
Monday, March 3

Proportions as Response Variables
Consider the following data from an experiment that exposed batches of beetles to carbon disulphide.
library(trtools)
library(ggplot2)
library(ggrepel) # used for geom_label_repel (see below)

bliss$proportion <- paste(bliss$dead, "/", bliss$exposed, sep = "")
bliss

concentration dead exposed proportion
1 49.1 2 29 2/29
2 49.1 4 30 4/30
3 53.0 7 30 7/30
4 53.0 6 30 6/30
5 56.9 9 28 9/28
6 56.9 9 34 9/34
7 60.8 14 27 14/27
8 60.8 14 29 14/29
9 64.8 23 30 23/30
10 64.8 29 33 29/33
11 68.7 29 31 29/31
12 68.7 24 28 24/28
13 72.6 29 30 29/30
14 72.6 32 32 32/32
15 76.5 29 29 29/29
16 76.5 31 31 31/31

p <- ggplot(bliss, aes(x = concentration, y = dead/exposed)) +
geom_point() + ylim(0, 1) + theme_minimal() +
geom_label_repel(aes(label = proportion), box.padding = 0.75) +
labs(x = "Concentration of Carbon Disulphide (mg/liter)",

y = "Proportion of Beetles Dying")
plot(p)
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The interest here is in modeling the proportion of dead beetles as a response variable.

A proportion Yi can be defined as Yi = Ci/mi where Ci is a count and mi is a total so that Ci = 0, 1, . . . , mi

and Yi = 0, 1/mi, 2/mi, . . . , 1. Note that proportions are not quite the same as rates. Proportions are
bounded between zero and one, but rates are only bounded below by zero.

1. Proportions may require nonlinear models because 0 ≤ E(Yi) ≤ 1.

2. Proportions tend to exhibit heteroscedasticty with variance depending on E(Yi) and mi. The variance
of Yi tends to be smaller as E(Yi) gets closer to zero or one, and is inversely proportional to mi.

3. Non-normal discrete distribution.

The Binomial Distribution
Assume m independent “trials” with a probability of a “success” on each trial of p (and thus the probability
of a “failure” is 1 − p). The number of successes then has a binomial distribution such that

P (C = c) =
(

m

c

)
pc(1 − p)m−c

where (
m

c

)
= m!

c!(m − c)! .

The possible values of C are 0, 1, . . . , m. Note that
(

m
c

)
is the number of outcomes where we can have a count

of c out of m, and pc(1 − p)m−c is the probability of each of these outcomes.

Example: Suppose that the probability of observing a seed germinate under certain conditions is 0.2, and we
observe four seeds. Let C be the number of seeds that germinate. Then m = 4 and p = 0.2. The probability
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that, say, C = 3 is then
P (C = 3) = 4!

3!(4 − 3)!︸ ︷︷ ︸
4

0.23(1 − 0.2)4−3︸ ︷︷ ︸
0.0064

= 0.0246.

There are four outcomes that give three successes, and each of these outcomes has a probability of 0.0064.

Outcome Probability
SSSF 0.2 × 0.2 × 0.2 × 0.8
SSFS 0.2 × 0.2 × 0.2 × 0.8
SFSS 0.2 × 0.2 × 0.2 × 0.8
FSSS 0.2 × 0.2 × 0.2 × 0.8

The proportion is obtained as Y = C/m.

The figures below show several binomial distributions for different values of m and p.
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The figures below show the distributions of the proportion C/m.
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It can be shown that
E(C) = mp and Var(C) = mp(1 − p).

Then for the proportion Y = C/m it follows that

E(Y ) = p and Var(Y ) = p(1 − p)/m.

This is because E(Y ) = E(C/m) = E(C)/m = mp/m = p and Var(Y ) = Var(C/m) = Var(C)/m2 =
mp(1 − p)/m2 = p(1 − p)/m. Note that the variance is at its maximum when p = 0.5 and gets smaller as p
moves away from 0.5 toward p = 0 or p = 1.
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An important special case of the binomial distribution is the Bernoulli distribution where m = 1 so that
C = 0, 1 and Y = 0, 1.

Binomial Generalized Linear Models
Assume that each C1, C2, . . . , Cn has a binomial distribution with parameters p1, p2, . . . , pn and
m1, m2, . . . , mn, respectively, but m1, m2, . . . , mn are observed/known). A binomial GLM will then specify
the expected value of Yi = Ci/mi as

g[E(Yi)] = ηi or E(Yi) = g−1(ηi),

where ηi = β0 + β1xi1 + β2xi2 + · · · + βkxik.

Recall that E(Yi) = pi so we are effectively specifying a model for the probability of a success. The variance
of Yi is then

Var(Yi) = E(Yi)[1 − E(Yi)]/mi = pi(1 − pi)/mi,

so that 0 ≤ Var(Yi) ≤ 0.25mi. Like rates, it is preferable to not model proportions as response variables
without accounting for the denominator mi since it affects the variance.

Logistic Regression
Logistic regression is a binomial generalized linear model that uses a “logit” link function such that

g[E(Yi)] = log
[

E(Yi)
1 − E(Yi)

]
= log

(
pi

1 − pi

)
,

and therefore
E(Yi) = eηi

1 + eηi
or pi = eηi

1 + eηi
,
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where again ηi = β0 + β1xi1 + β2xi2 + · · · + βkxik. Note that this guarantees that 0 < E(Yi) < 1.

Example: Consider again the bliss data. The glm function can be used to estimate the logistic regression
model where

E(Yi) = eηi

1 + eηi
,

where ηi = β0 + β1xi and xi is the concentration for the i-th observation (i.e., the i-th batch of beetles).
m <- glm(cbind(dead, exposed - dead) ~ concentration,

family = binomial(link = logit), data = bliss)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) -14.808 1.2898 -11.5 1.63e-30 -17.478 -12.409
concentration 0.249 0.0214 11.7 2.25e-31 0.209 0.294

Here the two variables in cbind are the number of times the event occurred (i.e., Ci) and the number of times
the event did not occur (i.e., mi − Ci). If the variables had been dead and alive, representing the number of
dead and alive beetles, respectively, then we’d write cbind(dead, alive). Also for family = binomial the
logit link function is the default so you can use family = binomial for logistic regression.
d <- data.frame(concentration = seq(49, 77, length = 1000))
d$yhat <- predict(m, newdata = d, type = "response")

p <- ggplot(bliss, aes(x = concentration, y = dead/exposed)) +
geom_point() + ylim(0, 1) + theme_minimal() +
geom_line(aes(y = yhat), data = d) +
geom_label_repel(aes(label = proportion), box.padding = 0.75) +
labs(x = "Concentration of Carbon Disulphide (mg/liter)",

y = "Proportion of Beetles Dying")
plot(p)
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Predicted probabilities, with confidence intervals, can also be obtained using contrast or glmint. Note that
the function ex/(1 + ex) is known to R as plogis.
trtools::contrast(m, list(concentration = c(50,60,70)),

cnames = c("50 mg/liter","60 mg/liter","70 mg/liter"), tf = plogis)

estimate lower upper
50 mg/liter 0.0871 0.0551 0.135
60 mg/liter 0.5354 0.4712 0.598
70 mg/liter 0.9330 0.8949 0.958

trtools::glmint(m, newdata = data.frame(concentration = c(50,60,70)))

fit low upp
1 0.0871 0.0551 0.135
2 0.5354 0.4712 0.598
3 0.9330 0.8949 0.958

d <- data.frame(concentration = seq(49, 77, length = 1000))
d <- cbind(d, trtools::glmint(m, newdata = d))
head(d)

concentration fit low upp
1 49.0 0.0692 0.0420 0.112
2 49.0 0.0696 0.0423 0.113
3 49.1 0.0701 0.0427 0.113
4 49.1 0.0706 0.0430 0.114
5 49.1 0.0710 0.0433 0.114
6 49.1 0.0715 0.0437 0.115
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p <- ggplot(bliss, aes(x = concentration, y = dead/exposed)) +
geom_point() + ylim(0, 1) + theme_minimal() +
geom_line(aes(y = fit), data = d) +
geom_line(aes(y = low), data = d, color = grey(0.75)) +
geom_line(aes(y = upp), data = d, color = grey(0.75)) +
geom_label_repel(aes(label = proportion), box.padding = 0.75) +
labs(x = "Concentration of Carbon Disulphide (mg/liter)",

y = "Proportion of Beetles Dying")
plot(p)
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Parameter and Contrast Interpretation: Odds Ratios
A logistic regression model can be written as

pi

1 − pi
= exp(β0 + β1xi1 + β2xi2 + · · · + βkxik)

where pi/(1−pi) is the odds of the event. The odds is simply the ratio of the probability of the event occurring
(pi) to the probability of the event not occurring (1 − pi).

Odds are sometimes stated in “fractional form” as two numbers separated by a colon or other character (e.g.,
an odds of 1.5 might be written as “3:2” or “three to two”). Note that in its fractional form the odds a : b
implies a probability of a/(a + b).

It is important to note that probabilities and odds are related but not equal.
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Odds
Probability Numeric Fractional

0.01 0.01 1:99
0.1 0.11 1:9
0.25 0.33 1:3
1/3 0.50 1:2
0.4 0.67 2:3
0.5 1.00 1:1
0.6 1.50 3:2
2/3 2.00 2:1
0.75 3.00 3:1
0.9 9.00 9:1
0.99 99.00 99:1

Probability

O
dd

s

0.00 0.25 0.50 0.75

0
1/

3
1

3

Let Oi be the odds for the i-th observation. Then Oi = pi/(1−pi) and pi = Oi/(1+Oi). Note that 0 ≤ pi ≤ 1
but 0 ≤ Oi ≤ ∞.
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We can write a logistic regression model in terms of the odds of an event as

Oi = exp(β0 + β1xi1 + β2xi2 + · · · + βkxik),

or
Oi = eβ0eβ1xi1eβ2xi2 · · · eβkxik .

Here we can use contrast to make inferences about the odds of death.
trtools::contrast(m, list(concentration = c(50,60,70)),

cnames = c("50 mg/liter","60 mg/liter","70 mg/liter"), tf = exp)

estimate lower upper
50 mg/liter 0.0954 0.0583 0.156
60 mg/liter 1.1523 0.8911 1.490
70 mg/liter 13.9222 8.5143 22.765

We can even plot the estimated odds of death.
d <- data.frame(concentration = seq(49, 77, length = 1000))
d$yhat <- predict(m, newdata = d, type = "response")
d$odds <- d$yhat / (1 - d$yhat)

p <- ggplot(d, aes(x = concentration, y = odds)) +
geom_line() + theme_minimal() +
labs(x = "Concentration of Carbon Disulphide (mg/liter)",

y = "Odds of Beetles Dying")
plot(p)
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The model for the odds is “log-linear” like the model for expected counts in Poisson regression. To interpret
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the parameters of a logistic regression model, we can use odds ratios which are similar to rate ratios in Poisson
regression.

Odds Ratio: Quantitative Explanatory Variable

Suppose we have the logistic regression model

Oi = exp(β0 + β1x) = eβ0eβ1x,

were xi is a quantitative explanatory variable. Consider the odds at x and x + 1 for arbitrary x,

Oa = eβ0eβ1(x+1) and Ob = eβ0eβ1x.

Then the odds ratio is
Oa

Ob
= eβ0eβ1(x+1)

eβ0eβ1x
= eβ0eβ1xeβ1

eβ0eβ1x
= eβ1 ⇔ Oa = Obeβ1 ,

so that an increase x by one unit changes the odds by a factor of eβ1 . Also, we can compute the percent
change in the odds as

100% × [Oa/Ob − 1],

where Oa/Ob = eβ1 is the odds ratio. Again, the sign tells us if this is a percent increase or decrease in the
odds.

Example: Consider again the model for the bliss data.
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) -14.808 1.2898 -11.5 1.63e-30 -17.478 -12.409
concentration 0.249 0.0214 11.7 2.25e-31 0.209 0.294

exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 3.70e-07 2.57e-08 4.08e-06
concentration 1.28e+00 1.23e+00 1.34e+00

trtools::contrast(m, tf = exp,
a = list(concentration = 2),
b = list(concentration = 1))

estimate lower upper
1.28 1.23 1.34

An odds ratio is then simply the ratio of the odds at two different values of an explanatory variable. We
could compute the odds ratio, for example, for an increase of 1, 5, 10, and 20 mg/liter.
trtools::contrast(m, tf = exp,

a = list(concentration = c(1,5,10,20)),
b = list(concentration = 0),
cnames = c("+1 mg/liter", "+5 mg/liter", "+10 mg/liter", "+20 mg/liter"))

estimate lower upper
+1 mg/liter 1.28 1.23 1.34
+5 mg/liter 3.48 2.82 4.29
+10 mg/liter 12.08 7.95 18.37
+20 mg/liter 145.97 63.13 337.54

Suppose that we model instead the probability of survival rather than death.
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m <- glm(cbind(exposed - dead, dead) ~ concentration,
family = binomial, data = bliss)

cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) 14.808 1.2898 11.5 1.63e-30 12.409 17.478
concentration -0.249 0.0214 -11.7 2.25e-31 -0.294 -0.209

exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 2.70e+06 2.45e+05 3.90e+07
concentration 7.79e-01 7.46e-01 8.11e-01

trtools::contrast(m, tf = exp,
a = list(concentration = 2),
b = list(concentration = 1))

estimate lower upper
0.779 0.747 0.813

Note the “symmetry” of logistic regression. Whether we model the probability of the event or its complement
is just a matter of parameterization.

Odds Ratio: Categorical Explanatory Variable

Suppose we have the model
Oi = exp(β0 + β1x) = eβ0eβ1x,

were x is an indicator variable so that

x =
{

1, if the observation is from group a,

0, if the observation is from group b,

so that the model can be written as

Oi =
{

eβ0eβ1 , if the observation is from group a,

eβ0 , if the observation is from group b.

So we can write the odds as
Oa = eβ0eβ1 and Ob = eβ0 .

The odds ratio is then
Oa

Ob
= eβ0eβ1

eβ0
= eβ1 or Ob

Oa
= eβ0

eβ0eβ1
= 1

eβ1
= e−β1 .

So the odds for group a is eβ1 times that for group b, and the odds for group b is e−β1 = 1/eβ1 times that for
group a. We can compute how much larger (or smaller) Oa is relative to Ob with

100% × [Oa/Ob − 1],

where Oa/Ob = eβ1 is the odds ratio. The sign tells us if Oa is a percent larger or smaller than Ob.

Example: Consider the following data from a study that investigated the effect of non-indigenous brook
trout on the survival of salmon.
library(abd) # for BrookTrout data
p <- ggplot(BrookTrout, aes(x = trout, y = salmon.survived/salmon.released)) +

geom_point() + ylim(0, 0.5) + coord_flip() + theme_minimal() +
labs(x = "Presence/Absence of\n Brook Trout",

y = "Proportion of Released Salmon Surviving")
plot(p)

12



absent

present

0.0 0.1 0.2 0.3 0.4 0.5
Proportion of Released Salmon Surviving

P
re

se
nc

e/
A

bs
en

ce
 o

f
 B

ro
ok

 T
ro

ut

m <- glm(cbind(salmon.survived, salmon.released - salmon.survived) ~ trout,
data = BrookTrout, family = binomial)

cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) -1.30 0.0367 -35.43 5.00e-275 -1.372 -1.2283
troutpresent -0.14 0.0519 -2.69 7.12e-03 -0.241 -0.0379

exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 0.273 0.254 0.293
troutpresent 0.870 0.786 0.963

trtools::contrast(m, a = list(trout = "present"), b = list(trout = "absent"), tf = exp)

estimate lower upper
0.87 0.786 0.963

trtools::contrast(m, a = list(trout = "absent"), b = list(trout = "present"), tf = exp)

estimate lower upper
1.15 1.04 1.27

Recall that estimated probabilities can be computed using contrast with tf = plogis.
trtools::contrast(m, a = list(trout = c("present","absent")),

tf = plogis, cnames = c("prob @ present","prob @ absent"))

estimate lower upper
prob @ present 0.192 0.181 0.203
prob @ absent 0.214 0.202 0.227

Similarly the estimated odds can be computed if tf = exp.
trtools::contrast(m, a = list(trout = c("present","absent")),

tf = exp, cnames = c("odds @ present","odds @ absent"))

estimate lower upper
odds @ present 0.237 0.221 0.255
odds @ absent 0.273 0.254 0.293

The odds ratios are then simply a ratio of these odds.

Example: Consider the following study of the germination of five varieties of soybean seeds. Note that each
observation was the number of seeds that failed to germinate out of 100 seeds.
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head(faraway::soybean, 10)

variety replicate failure
1 check 1 8
2 check 2 10
3 check 3 12
4 check 4 13
5 check 5 11
6 arasan 1 2
7 arasan 2 6
8 arasan 3 7
9 arasan 4 11
10 arasan 5 5

p <- ggplot(faraway::soybean, aes(x = variety, y = (100-failure)/100)) +
geom_jitter(height = 0, width = 0.1) + theme_minimal() +
labs(x = "Soybean Variety", y = "Proportion Germinated")

plot(p)
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m <- glm(cbind(100 - failure, failure) ~ variety, family = binomial, data = faraway::soybean)
exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 15.129 10.711 22.213
varietycheck 0.546 0.341 0.859
varietyfermate 1.074 0.636 1.817
varietysemesan 0.935 0.562 1.554
varietyspergon 0.740 0.453 1.197
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# compute odds ratio of germination for arasan, fermate, semesan, and spergon versus check
trtools::contrast(m, tf = exp,

a = list(variety = c("arasan","fermate","semesan","spergon")),
b = list(variety = "check"),
cnames = c("arasan/check","fermate/check","semesan/check","spergon/check"))

estimate lower upper
arasan/check 1.83 1.156 2.90
fermate/check 1.97 1.230 3.14
semesan/check 1.71 1.090 2.69
spergon/check 1.36 0.885 2.08

Aggregated Versus Binary Responses
Suppose the observations in the bliss data were for individual beetles.
blissbin <- bliss |> mutate(alive = exposed - dead) |>

dplyr::select(concentration, dead, alive) |>
pivot_longer(cols = c(dead,alive), names_to = "state", values_to = "count") |>
uncount(count)

head(blissbin)

# A tibble: 6 x 2
concentration state

<dbl> <chr>
1 49.1 dead
2 49.1 dead
3 49.1 alive
4 49.1 alive
5 49.1 alive
6 49.1 alive

We can specify the response variable as follows.
m <- glm(state == "dead" ~ concentration, family = binomial, data = blissbin)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.808 1.2897 -11.5 1.63e-30
concentration 0.249 0.0214 11.7 2.24e-31

But do not use this the method above if using emmeans. Or if the response variable is binary we can specify
the model as follows.
blissbin <- blissbin |> mutate(y = ifelse(state == "dead", 1, 0))
m <- glm(y ~ concentration, family = binomial, data = blissbin)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.808 1.2897 -11.5 1.63e-30
concentration 0.249 0.0214 11.7 2.24e-31

m <- glm(cbind(y, 1-y) ~ concentration, family = binomial, data = blissbin)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.808 1.2897 -11.5 1.63e-30
concentration 0.249 0.0214 11.7 2.24e-31
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Note that our parameter estimates and other inferences are the same as what we obtained with the aggregated
data.
head(bliss)

concentration dead exposed proportion
1 49.1 2 29 2/29
2 49.1 4 30 4/30
3 53.0 7 30 7/30
4 53.0 6 30 6/30
5 56.9 9 28 9/28
6 56.9 9 34 9/34

m <- glm(cbind(dead, exposed - dead) ~ concentration,
family = binomial, data = bliss)

It is usually not necessary to transform aggregate data into binary data, but it is sometimes useful to
transform binary data into aggregate data. Here is how that can be done. Note that any explanatory variables
(separated by commas) are listed in group_by and the response variable is listed in count.
blissagg <- blissbin |> group_by(concentration) |> count(state) |>

pivot_wider(names_from = state, values_from = n, values_fill = 0)
blissagg

# A tibble: 8 x 3
# Groups: concentration [8]

concentration alive dead
<dbl> <int> <int>

1 49.1 53 6
2 53.0 47 13
3 56.9 44 18
4 60.8 28 28
5 64.8 11 52
6 68.7 6 53
7 72.6 1 61
8 76.5 0 60

m <- glm(cbind(dead, alive) ~ concentration, family = binomial, data = blissagg)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.808 1.2898 -11.5 1.63e-30
concentration 0.249 0.0214 11.7 2.25e-31
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