Friday, February 28

Poisson Regression for Rates

The *i*-th observed $rate R_i$ can be written as

$$R_i = C_i/S_i$$

where C_i is a *count* and S_i is the "size" of the interval in which the counts are observed. Examples include fish per minute, epileptic episodes per day, or defects per (square) meter. In some cases S_i is referred to as the "exposure" of the *i*-th observation.

Assume that the count C_i has a Poisson distribution and that

$$E(C_i) = S_i \underbrace{\exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik})}_{\lambda_i},$$

where λ_i is the expected count per unit (e.g., per minute) so that $S_i\lambda_i$ is then the expected count per S_i (e.g., per hour if $S_i = 60$, per day if $S_i = 1440$, or per second if $S_i = 1/60$). The expected rate is then

$$E(R_i) = E(C_i/S_i) = E(C_i)/S_i = \exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik}),$$

if we treat exposure as fixed (like we do $x_{i1}, x_{i2}, \ldots, x_{ik}$). But rather than using R_i as the response variable we can use C_i as the response variable in a Poisson regression model where

$$E(C_i) = S_i \exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik}) = \exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \log S_i),$$

and where $\log S_i$ is an "offset" variable (i.e., basically an explanatory variable where it's β_j is "fixed" at one).

Note: If S_i is a constant for all observations so that $S_i = S$ then we can write the model as

$$E(C_i) = \exp(\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \log S_i) = \exp(\beta_0^* + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}),$$

where $\beta_0^* = \log(S) + \beta_0$ so that the offset is "absorbed" into β_0 , and we do not need to be concerned about it. Including an offset is only necessary if S_i is not the same for all observations.

Variance of Rates

Using rates as response variables in a linear or nonlinear model without accounting for S_i is not advisable because of heteroscedasticity due to unequal S_i .

We have that $E(R_i) = E(C_i)/S_i$. But

$$Var(R_i) = Var(C_i/S_i) = Var(C_i)/S_i^2 = E(R_i)S_i/S_i^2 = E(R_i)/S_i$$

because (a) $Var(Y/c) = Var(Y)/c^2$ if c is a constant, $Var(C_i) = E(C_i)$ because C_i has a Poisson distribution, and thus $E(C_i) = E(R_i)S_i$. Thus the variance of the rate depends on the expected response and S_i (so larger/smaller S_i , then smaller/larger variance of R_i).

We can deal with this heteroscedasticity by either (a) using an appropriate offset variable in Poisson regression or a related model or (b) using weights of $w_i = S_i/E(R_i)$ in an iteratively weighted least squares with weights of $w_i = S_i/\hat{y}_i$.

Modeling Rates with Poisson Regression

Software for GLMs (and sometimes linear models) will often permit specification of an offset variable. In R this is done using offset in the model formula.

Example: Consider the following data from an observational study of auto accidents.

```
library(trtools)
head(accidents)
  accidents years location treatment
1
          13
                 9
                                 before
                           a
                 9
2
           6
                           b
                                 before
3
          30
                 8
                                 before
                           С
4
          20
                 8
                           d
                                 before
5
          10
                 9
                                 before
                           е
          15
                           f
                                 before
p <- ggplot(accidents, aes(x = location, y = accidents/years)) +</pre>
  geom_point(aes(size = years, color = treatment)) +
  labs(x = "Location", y = "Accidents per Year",
    size = "Years", color = "Treatment") + theme_minimal()
plot(p)
    3
                                                                                       Years
 Accidents per Year
                                                                                           4
                                                                                           6
                                                                                           8
                                                                                       Treatment
                                                                                           after
                                                                                           before
    0
                     b
                              С
                                                                    g
                                        Location
m <- glm(accidents ~ location + treatment + offset(log(years)),</pre>
  data = accidents, family = poisson)
cbind(summary(m)$coefficients, confint(m))
```

0.373 -1.366 0.17207 -1.2924 0.177

2.5 % 97.5 %

Estimate Std. Error z value Pr(>|z|)

-0.510

(Intercept)

```
locationb
                   -0.486
                               0.449 -1.080 0.27994 -1.4122
                                       3.117 0.00182 0.4027
locationc
                    1.018
                               0.326
                                                                 1.694
locationd
                   0.537
                               0.356
                                       1.507
                                               0.13168 -0.1510
                                                                1.260
locatione
                   -0.262
                               0.421 -0.624 0.53279 -1.1136
                                                                0.559
locationf
                   0.586
                               0.353
                                       1.660 0.09690 -0.0939
                               0.449 -1.080 0.27994 -1.4122 0.378
locationg
                   -0.486
                                       0.526 0.59921 -0.5459 0.958
locationh
                    0.199
                               0.379
treatmentbefore
                   0.781
                               0.275
                                        2.834 0.00459 0.2741 1.362
exp(cbind(coef(m), confint(m)))
                       2.5 % 97.5 %
(Intercept)
                0.601 0.275
                               1.19
                0.615 0.244
locationb
                               1.46
locationc
                2.767 1.496
                               5.44
locationd
                1.711 0.860
                               3.53
locatione
                0.769 0.328
                               1.75
locationf
                1.797 0.910
                               3.68
locationg
                0.615 0.244
                               1.46
                1.221 0.579
locationh
                               2.61
treatmentbefore 2.183 1.315
                               3.90
When using other tools like contrast or functions from the emmeans package, be sure to specify the offset.
Typically we would use a value of one corresponding to one unit of whatever the offset represents (e.g., space
or time). Here are the rate ratios for the treatment.
trtools::contrast(m,
  a = list(treatment = "before", location = letters[1:8], years = 1),
  b = list(treatment = "after", location = letters[1:8], years = 1),
  cnames = letters[1:8], tf = exp)
```

```
estimate lower upper
а
      2.18 1.27
                  3.75
      2.18 1.27
                  3.75
b
      2.18
           1.27
                  3.75
С
d
      2.18 1.27 3.75
      2.18
           1.27
                  3.75
е
f
     2.18
           1.27 3.75
      2.18
           1.27
                  3.75
g
     2.18 1.27 3.75
h
trtools::contrast(m,
  a = list(treatment = "after", location = letters[1:8], years = 1),
  b = list(treatment = "before", location = letters[1:8], years = 1),
  cnames = letters[1:8], tf = exp)
  estimate lower upper
     0.458 0.267 0.786
а
     0.458 0.267 0.786
b
    0.458 0.267 0.786
С
d
    0.458 0.267 0.786
    0.458 0.267 0.786
е
    0.458 0.267 0.786
f
     0.458 0.267 0.786
g
     0.458 0.267 0.786
```

Here are the estimated expected number of accidents per year at location a.

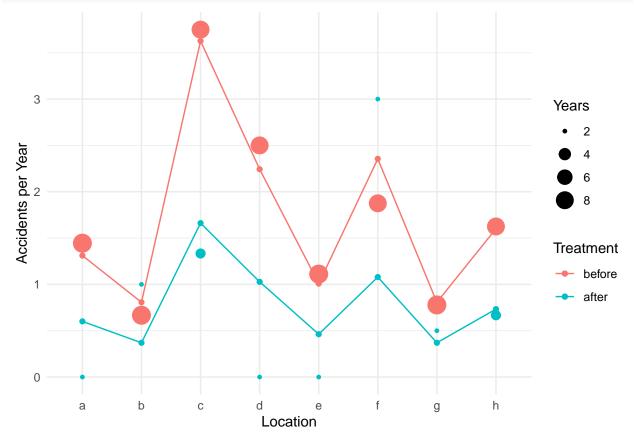
```
trtools::contrast(m, a = list(treatment = c("before", "after"), location = "a", years = 1),
  cnames = c("before", "after"), tf = exp)
       estimate lower upper
before
          1.311 0.759 2.26
after
          0.601 0.289 1.25
Here are the estimated expected number of accidents per decade at location a.
trtools::contrast(m, a = list(treatment = c("before", "after"), location = "a", years = 10),
  cnames = c("before", "after"), tf = exp)
       estimate lower upper
          13.11 7.59 22.6
before
after
           6.01 2.89 12.5
When using functions from the emmeans package we use the offset argument with the value specified on
the log scale. Here are the estimated number of accidents per decade.
library(emmeans)
emmeans(m, ~treatment location, type = "response", offset = log(10))
location = a:
treatment rate
                  SE df asymp.LCL asymp.UCL
after
            6.0 2.24 Inf
                               2.89
                                         12.5
before
           13.1 3.65 Inf
                               7.59
                                         22.6
location = b:
                  SE df asymp.LCL asymp.UCL
 treatment rate
 after
            3.7 1.60 Inf
                               1.58
                                          8.6
            8.1 2.86 Inf
                               4.03
                                         16.2
before
location = c:
treatment rate
                  SE df asymp.LCL asymp.UCL
after
           16.6 4.83 Inf
                              9.39
                                         29.4
           36.3 6.39 Inf
before
                              25.68
                                         51.2
location = d:
                  SE df asymp.LCL asymp.UCL
treatment rate
           10.3 3.42 Inf
                               5.35
                                         19.7
after
before
           22.4 5.06 Inf
                              14.42
                                         34.9
location = e:
 treatment rate
                  SE df asymp.LCL asymp.UCL
           4.6 1.86 Inf
after
                               2.10
                                         10.2
           10.1 3.20 Inf
                               5.42
before
                                         18.8
location = f:
treatment rate
                  SE df asymp.LCL asymp.UCL
           10.8 3.56 Inf
                               5.65
                                         20.6
after
before
           23.6 5.18 Inf
                              15.30
                                         36.3
location = g:
treatment rate
                  SE df asymp.LCL asymp.UCL
 after
            3.7 1.60 Inf
                               1.58
                                          8.6
before
            8.1 2.86 Inf
                               4.03
                                         16.2
```

```
location = h:
treatment rate
                  SE df asymp.LCL asymp.UCL
            7.3 2.56 Inf
                               3.70
                                         14.5
before
           16.0 4.18 Inf
                               9.59
                                         26.7
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Here is the rate ratio for the effect of treatment.
pairs(emmeans(m, ~treatment|location, type = "response", offset = log(10)), infer = TRUE)
location = a:
 contrast
                ratio
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf
                                     0.267
                                               0.786
                                                        1 -2.834 0.0046
location = b:
 contrast
                ratio
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf
                                     0.267
                                               0.786
                                                        1 -2.834 0.0046
location = c:
 contrast
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
                ratio
after / before 0.458 0.126 Inf
                                     0.267
                                               0.786
                                                        1 -2.834 0.0046
location = d:
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                ratio
after / before 0.458 0.126 Inf
                                     0.267
                                               0.786
                                                        1 -2.834 0.0046
location = e:
 contrast
                ratio
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf
                                     0.267
                                               0.786
                                                        1 -2.834 0.0046
location = f:
 contrast
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
                ratio
                                               0.786
after / before 0.458 0.126 Inf
                                     0.267
                                                        1 -2.834 0.0046
location = g:
 contrast
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
                ratio
after / before 0.458 0.126 Inf
                                     0.267
                                                        1 -2.834 0.0046
                                               0.786
location = h:
 contrast
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
                ratio
after / before 0.458 0.126 Inf
                                     0.267
                                               0.786
                                                        1 -2.834 0.0046
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
Use reverse = TRUE to "flip" the rate ratio. Also for rate ratios the size of the offset does not matter since
it "cancels-out" in the ratio. Also since there is no interaction in this model which means the rate ratio does
```

not depend on location, we can omit it when using emmeans (but not contrast).

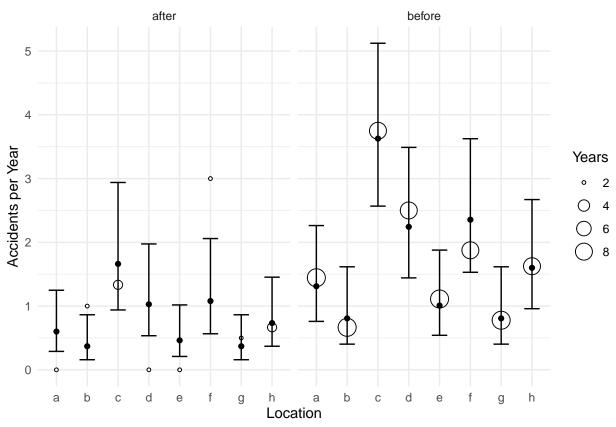
pairs(emmeans(m, ~treatment, type = "response"), infer = TRUE)

```
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046
```

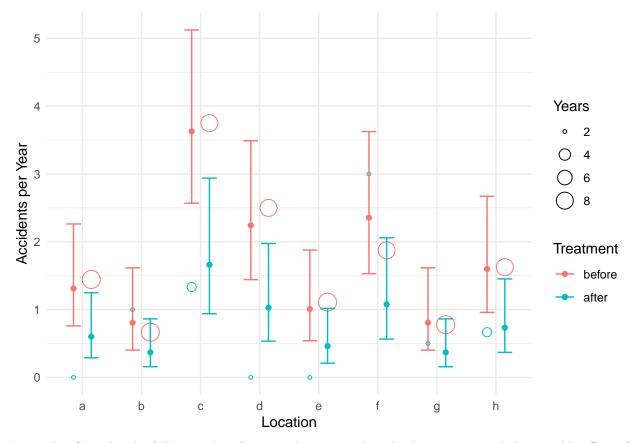

Results are averaged over the levels of: location Confidence level used: 0.95 Intervals are back-transformed from the log scale Tests are performed on the log scale

When using predict we need to be sure to also include the offset amount. Again, we would use a value of one assuming we want the number of events per unit space/time.

```
d <- expand.grid(treatment = c("before", "after"), location = letters[1:8], years = 1)
d$yhat <- predict(m, newdata = d, type = "response")
head(d)</pre>
```

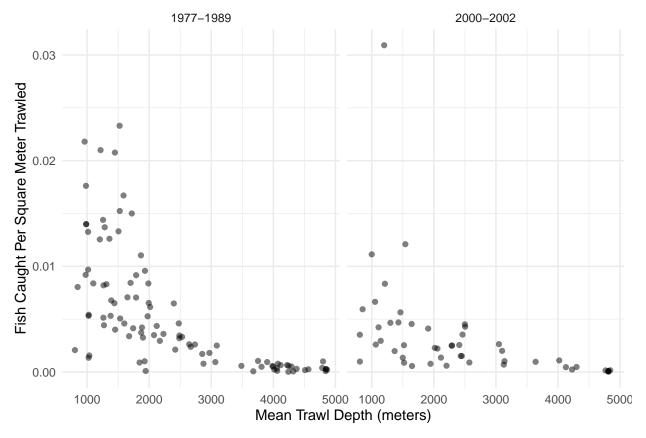

```
treatment location years yhat
    before
1
                  a
                         1 1.311
                         1 0.601
2
      after
                   a
3
    before
                   b
                         1 0.807
                         1 0.370
4
     after
                   b
5
     before
                   С
                         1 3.627
6
      after
                         1 1.662
```

```
p <- ggplot(accidents, aes(x = location, y = accidents/years)) +
  geom_point(aes(size = years, color = treatment)) +
  labs(x = "Location", y = "Accidents per Year",
      size = "Years", color = "Treatment") + theme_minimal() +
  geom_point(aes(y = yhat, color = treatment), data = d) +
  geom_line(aes(y = yhat, group = treatment, color = treatment), data = d)
  plot(p)</pre>
```

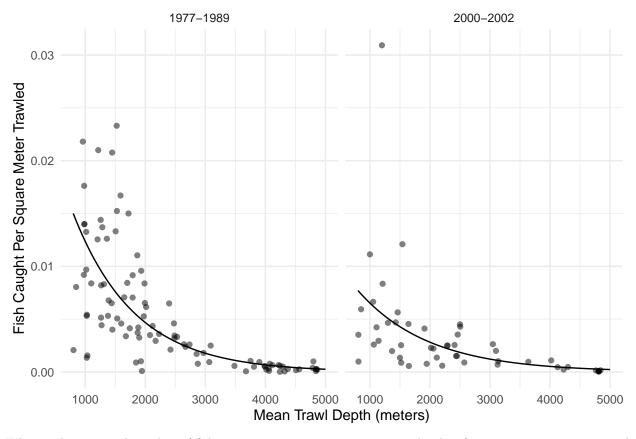


We can use the glmint function from the **trtools** package if we want to produce confidence intervals for plots.

```
d <- expand.grid(treatment = c("before", "after"), location = letters[1:8], years = 1)</pre>
d$yhat <- predict(m, newdata = d, type = "response")</pre>
glmint(m, newdata = d)
     fit
           low
                 upp
1 1.311 0.759 2.263
2 0.601 0.289 1.248
3 0.807 0.403 1.616
4 0.370 0.158 0.864
5 3.627 2.568 5.123
6 1.662 0.939 2.939
7 2.243 1.442 3.489
8 1.028 0.535 1.975
9 1.008 0.542 1.878
10 0.462 0.210 1.018
11 2.355 1.530 3.625
12 1.079 0.565 2.059
13 0.807 0.403 1.616
14 0.370 0.158 0.864
15 1.600 0.959 2.671
16 0.733 0.370 1.453
cbind(d, glmint(m, newdata = d))
   treatment location years yhat
                                    fit
                                          low
1
      before
                          1 1.311 1.311 0.759 2.263
                    a
2
       after
                          1 0.601 0.601 0.289 1.248
3
      before
                          1 0.807 0.807 0.403 1.616
                    b
                          1 0.370 0.370 0.158 0.864
4
       after
                    b
5
      before
                    С
                          1 3.627 3.627 2.568 5.123
6
      after
                          1 1.662 1.662 0.939 2.939
                    С
7
                          1 2.243 2.243 1.442 3.489
      before
                    d
8
                          1 1.028 1.028 0.535 1.975
       after
                    d
9
      before
                          1 1.008 1.008 0.542 1.878
                    е
10
                         1 0.462 0.462 0.210 1.018
      after
11
      before
                    f
                          1 2.355 2.355 1.530 3.625
12
       after
                    f
                          1 1.079 1.079 0.565 2.059
13
      before
                          1 0.807 0.807 0.403 1.616
                    g
14
       after
                          1 0.370 0.370 0.158 0.864
                    g
15
      before
                          1 1.600 1.600 0.959 2.671
                    h
                          1 0.733 0.733 0.370 1.453
16
       after
                    h
d <- cbind(d, glmint(m, newdata = d))</pre>
p <- ggplot(accidents, aes(x = location)) +</pre>
  geom_point(aes(y = accidents/years, size = years), shape = 21, fill = "white") +
 facet_wrap(~ treatment) + theme_minimal() +
 labs(x = "Location", y = "Accidents per Year", size = "Years") +
  geom_errorbar(aes(ymin = low, ymax = upp), data = d, width = 0.5) +
  geom_point(aes(y = fit), data = d)
plot(p)
```




```
p <- ggplot(accidents, aes(x = location, color = treatment)) +
  geom_point(aes(y = accidents/years, size = years),
    position = position_dodge(width = 0.6), shape = 21, fill = "white") +
  labs(x = "Location", y = "Accidents per Year",
    size = "Years", color = "Treatment") + theme_minimal() +
  geom_errorbar(aes(ymin = low, ymax = upp), data = d,
    position = position_dodge(width = 0.6), width = 0.5) +
  geom_point(aes(y = fit), data = d, position = position_dodge(width = 0.6))
  plot(p)</pre>
```



Example: Consider the following data from an observational study that investigated the possible effect of the development of a commercial fishery on deep sea fish abundance. The figure below shows the number of fish per square meter of swept area from 147 trawls by mean depth in meters, and by whether the trawl was during one of two periods. The 1977-1989 period was from before the development of a commercial fishery, and the period 2000-2002 was when the fishery was active.

```
library(COUNT)
data(fishing)
head(fishing)
  site totabund
                 density meandepth year
                                             period sweptarea
             76 0.002070
                                804 1978 1977-1989
1
     1
                                                         36710
2
     2
            161 0.003520
                                808 2001 2000-2002
                                                         45741
3
     3
                                809 2001 2000-2002
             39 0.000981
                                                         39775
            410 0.008039
4
     4
                                848 1979 1977-1989
                                                         51000
5
     5
            177 0.005933
                                853 2002 2000-2002
                                                         29831
            695 0.021801
                                960 1980 1977-1989
                                                         31880
p <- ggplot(fishing, aes(x = meandepth, y = totabund/sweptarea)) +</pre>
  geom_point(alpha = 0.5) + facet_wrap(~ period) + theme_minimal() +
  labs(x = "Mean Trawl Depth (meters)",
    y = "Fish Caught Per Square Meter Trawled")
plot(p)
```


An appropriate model for these data might be as follows.

```
m <- glm(totabund ~ period * meandepth + offset(log(sweptarea)),</pre>
  family = poisson, data = fishing)
summary(m)$coefficients
                            Estimate Std. Error z value Pr(>|z|)
(Intercept)
                           -3.422819
                                       1.49e-02 -229.67 0.00e+00
period2000-2002
                                       2.97e-02 -25.94 2.55e-148
                           -0.771117
                           -0.000971
                                       7.96e-06 -121.94 0.00e+00
meandepth
period2000-2002:meandepth 0.000132
                                       1.52e-05
                                                    8.65 5.09e-18
d <- expand.grid(sweptarea = 1, period = c("1977-1989","2000-2002"),</pre>
  meandepth = seq(800, 5000, length = 100))
d$yhat <- predict(m, newdata = d, type = "response")</pre>
p <- p + geom_line(aes(y = yhat), data = d)</pre>
plot(p)
```


What is the expected number of fish per square meter in 1977-1989 at depths of 1000, 2000, 3000, 4000, and 5000 meters? What is it in 2000-2002?

```
trtools::contrast(m,
  a = list(sweptarea = 1,
    meandepth = c(1000, 2000, 3000, 4000, 5000), period = "1977-1989"),
  cnames = c("1000m", "2000m", "3000m", "4000m", "5000m"), tf = exp)
      estimate
                  lower
                            upper
1000m 0.012350 0.012147 0.012556
2000m 0.004676 0.004613 0.004739
3000m 0.001770 0.001728 0.001813
4000m 0.000670 0.000645 0.000696
5000m 0.000254 0.000241 0.000268
trtools::contrast(m,
  a = list(sweptarea = 1,
    meandepth = c(1000, 2000, 3000, 4000, 5000), period = "2000-2002"),
  cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)
```

estimate lower upper 1000m 0.006517 0.006325 0.006714 2000m 0.002815 0.002751 0.002881 3000m 0.001216 0.001170 0.001263 4000m 0.000525 0.000494 0.000558 5000m 0.000227 0.000208 0.000247

Here is how we can do that with **emmeans**.

```
library(emmeans)
emmeans(m, ~meandepth period, at = list(meandepth = seq(1000, 5000, by = 1000)),
  type = "response", offset = log(1))
period = 1977-1989:
 meandepth
                         SE df asymp.LCL asymp.UCL
      1000 0.01235 1.04e-04 Inf
                                  0.01215
                                             0.01256
                                             0.00474
      2000 0.00468 3.23e-05 Inf
                                  0.00461
      3000 0.00177 2.17e-05 Inf
                                  0.00173
                                           0.00181
      4000 0.00067 1.31e-05 Inf
                                  0.00065
                                            0.00070
      5000 0.00025 6.90e-06 Inf
                                  0.00024
                                           0.00027
period = 2000-2002:
 meandepth
                         SE df asymp.LCL asymp.UCL
              rate
                                  0.00633
      1000 0.00652 9.91e-05 Inf
                                            0.00671
      2000 0.00281 3.31e-05 Inf
                                  0.00275
                                             0.00288
      3000 0.00122 2.38e-05 Inf
                                  0.00117
                                             0.00126
      4000 0.00053 1.63e-05 Inf
                                  0.00049
                                            0.00056
      5000 0.00023 9.80e-06 Inf
                                  0.00021
                                            0.00025
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Note that we can change the units of swept area very easily here. There are 10,000 square meters in a hectare.
Here are the expected number of fish per hectare.
trtools::contrast(m,
 a = list(sweptarea = 10000,
   meandepth = c(1000, 2000, 3000, 4000, 5000), period = "1977-1989"),
  cnames = c("1000m", "2000m", "3000m", "4000m", "5000m"), tf = exp)
      estimate lower upper
       123.50 121.47 125.56
1000m
2000m
         46.76 46.13 47.39
         17.70 17.28 18.13
3000m
4000m
          6.70
                6.45
                        6.96
          2.54
5000m
                 2.41
                        2.68
trtools::contrast(m,
  a = list(sweptarea = 10000,
   meandepth = c(1000, 2000, 3000, 4000, 5000), period = "2000-2002"),
 cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)
      estimate lower upper
1000m
         65.17 63.25 67.14
2000m
         28.15 27.51 28.81
3000m
         12.16 11.70 12.63
4000m
         5.25 4.94 5.58
          2.27 2.08 2.47
5000m
emmeans(m, ~meandepth period, at = list(meandepth = seq(1000, 5000, by = 1000)),
 type = "response", offset = log(10000))
period = 1977-1989:
                    SE df asymp.LCL asymp.UCL
meandepth rate
      1000 123.5 1.040 Inf
                               121.5
                                          125.6
```

```
3000 17.7 0.217 Inf
                                17.3
                                           18.1
      4000
            6.7 0.131 Inf
                                 6.5
                                            7.0
      5000
            2.5 0.069 Inf
                                            2.7
                                 2.4
period = 2000-2002:
                    SE df asymp.LCL asymp.UCL
meandepth rate
      1000 65.2 0.991 Inf
                                63.3
      2000 28.1 0.331 Inf
                                27.5
                                           28.8
      3000 12.2 0.238 Inf
                                           12.6
                                11.7
      4000
           5.3 0.163 Inf
                                 4.9
                                            5.6
      5000
           2.3 0.098 Inf
                                 2.1
                                            2.5
Confidence level used: 0.95
Intervals are back-transformed from the log scale
What is the rate ratio of fish per square meter in 2000-2002 versus 1977-1989 at 1000, 2000, 3000, 4000, and
5000 meters?
trtools::contrast(m,
  a = list(sweptarea = 1, meandepth = c(1000, 2000, 3000, 4000, 5000), period = "2000-2002"),
  b = list(sweptarea = 1, meandepth = c(1000, 2000, 3000, 4000, 5000), period = "1977-1989"),
 cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)
      estimate lower upper
1000m
         0.528 0.510 0.546
2000m
         0.602 0.586 0.618
        0.687 0.656 0.719
3000m
4000m
        0.784 0.729 0.842
5000m
        0.894 0.809 0.989
Here it is for 1977-1989 versus 2000-2002.
trtools::contrast(m,
  a = list(sweptarea = 1, meandepth = c(1000, 2000, 3000, 4000, 5000), period = "1977-1989"),
 b = list(sweptarea = 1, meandepth = c(1000, 2000, 3000, 4000, 5000), period = "2000-2002"),
 cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)
      estimate lower upper
1000m
          1.90 1.83 1.96
2000m
          1.66 1.62 1.71
3000m
          1.46 1.39 1.52
4000m
          1.28 1.19 1.37
          1.12 1.01 1.24
5000m
Now using emmeans.
pairs(emmeans(m, ~meandepth*period, at = list(meandepth = seq(1000, 5000, by = 1000)),
 type = "response", offset = log(1)), by = "meandepth", infer = TRUE)
meandepth = 1000:
 contrast
                           ratio
                                     SE df asymp.LCL asymp.UCL null z.ratio p.value
 (1977-1989) / (2000-2002) 1.90 0.0330 Inf
                                                  1.83
                                                            1.96
                                                                    1 36.700 <.0001
meandepth = 2000:
 contrast
                           ratio
                                     SE df asymp.LCL asymp.UCL null z.ratio p.value
 (1977-1989) / (2000-2002) 1.66 0.0227 Inf
                                                  1.62
                                                            1.71
                                                                    1 37.200 <.0001
```

2000 46.8 0.323 Inf

46.1

47.4

```
meandepth = 3000:
                                     SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                           ratio
                                                 1.39
 (1977-1989) / (2000-2002) 1.46 0.0336 Inf
                                                           1.52
                                                                  1 16.300 <.0001
meandepth = 4000:
 contrast
                                     SE df asymp.LCL asymp.UCL null z.ratio p.value
                           ratio
 (1977-1989) / (2000-2002) 1.28 0.0468 Inf
                                                 1.19
                                                           1.37
                                                                       6.600 <.0001
meandepth = 5000:
                                     SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                           ratio
 (1977-1989) / (2000-2002) 1.12 0.0573 Inf
                                                 1.01
                                                           1.24
                                                                   1
                                                                       2.200 0.0288
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
How does the expected number of fish per square meter change per 1000m of depth?
# increasing depth by 1000m
trtools::contrast(m,
  a = list(sweptarea = 1, meandepth = 2000, period = c("1977-1989","2000-2002")),
 b = list(sweptarea = 1, meandepth = 1000, period = c("1977-1989", "2000-2002")),
 cnames = c("1977-1989","2000-2002"), tf = exp)
          estimate lower upper
            0.379 0.373 0.385
1977-1989
2000-2002
            0.432 0.421 0.443
# decreasing depth by 1000m
trtools::contrast(m,
  a = list(sweptarea = 1, meandepth = 1000, period = c("1977-1989","2000-2002")),
 b = list(sweptarea = 1, meandepth = 2000, period = c("1977-1989","2000-2002")),
 cnames = c("1977-1989","2000-2002"), tf = exp)
          estimate lower upper
1977-1989
              2.64 2.60 2.68
2000-2002
              2.32 2.26 2.37
Here is how to do the latter with emmeans.
pairs(emmeans(m, ~meandepth*period, at = list(meandepth = c(1000,2000)),
  offset = log(1), type = "response"), by = "period", infer = TRUE)
period = 1977-1989:
                               ratio
                                         SE df asymp.LCL asymp.UCL null z.ratio p.value
meandepth1000 / meandepth2000 2.64 0.0210 Inf
                                                               2.68
                                                                       1 121.900 <.0001
                                                     2.60
period = 2000-2002:
                                         SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                               ratio
meandepth1000 / meandepth2000 2.31 0.0301 Inf
                                                     2.26
                                                               2.38
                                                                       1 64.600 < .0001
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
```

Standardized Mortality Ratios

In epidemiology, the *standardized mortality ratio* (SMR) is the ratio of the *observed* number of deaths and the (estimated) *expected* number of deaths. Poisson regression with an offset can be used to model the SMR to determine if the number of deaths tends to be higher or lower than we would expect.

Example: Here is an example of an observational study using a Poisson regression model to investigate the relationship between lung cancer and radon exposure in counties in Minnesota.

Note: The data manipulation and plotting is quite a bit more complicated than what you will normally see in this class, but I have included it in case you might be interested to see the code.

First we will process the data containing the observed and expected number of deaths due to lung cancer, where the latter are based on the known distribution of age and gender in the county.

```
lung <- read.table("http://faculty.washington.edu/jonno/book/MNlung.txt",
  header = TRUE, sep = "\t") %>%
  mutate(obs = obs.M + obs.F, exp = exp.M + exp.F) %>%
  dplyr::select(X, County, obs, exp) %>%
  rename(county = County) %>%
  mutate(county = tolower(county)) %>%
  mutate(county = ifelse(county == "red", "red lake", county))
head(lung)
```

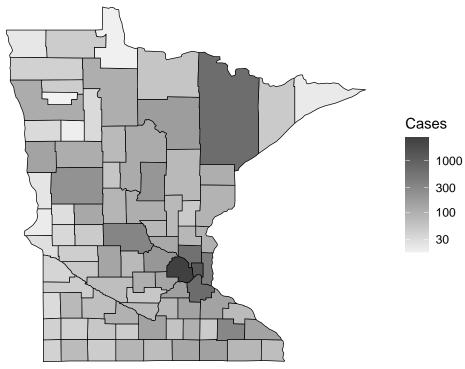
```
X county obs exp
1 1 aitkin 92 76.9
2 2 anoka 677 600.5
3 3 becker 105 107.9
4 4 beltrami 101 105.7
5 5 benton 61 81.4
6 6 big stone 32 27.4
```

Now we will read in data to estimate the average radon exposure of residents of each county.

```
radon <- read.table("http://faculty.washington.edu/jonno/book/MNradon.txt",
  header = TRUE) %>% group_by(county) %>%
  summarize(radon = mean(radon)) %>% rename(X = county)
head(radon)
```

Next we merge the two data frames.

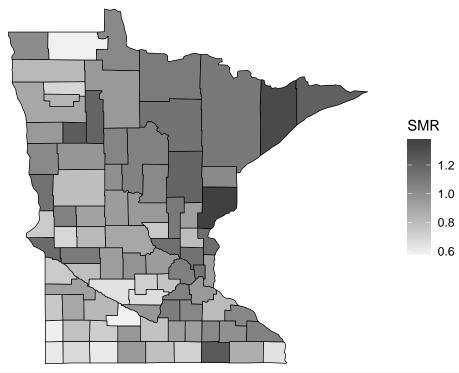
```
radon <- left_join(lung, radon) %>% dplyr::select(-X)
head(radon)
```


```
county obs exp radon
1 aitkin 92 76.9 2.08
2 anoka 677 600.5 3.21
3 becker 105 107.9 3.17
4 beltrami 101 105.7 3.66
```

```
5 benton 61 81.4 3.77 6 big stone 32 27.4 4.93
```

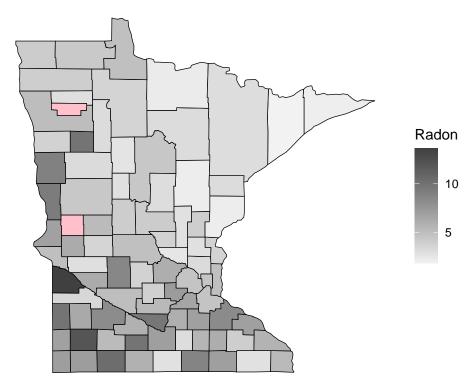
plot(p)

```
For fun we can make some plots of the data by county.
library(maps)
dstate <- map_data("state") %>%
  filter(region == "minnesota")
dcounty <- map_data("county") %>%
 filter(region == "minnesota") %>%
  rename(county = subregion)
dcounty <- left_join(dcounty, radon) %>%
  mutate(smr = obs/exp)
no_axes <- theme_minimal() + theme(</pre>
  axis.text = element_blank(),
  axis.line = element_blank(),
 axis.ticks = element_blank(),
  panel.border = element_blank(),
  panel.grid = element_blank(),
  axis.title = element_blank()
p \leftarrow ggplot(dcounty, aes(x = long, y = lat, group = group)) + coord_fixed(1.3) +
  geom_polygon(aes(fill = exp), color = "black", linewidth = 0.25) +
  scale_fill_gradient(low = grey(0.95), high = grey(0.25),
    trans = "log10", na.value = "pink") +
  theme(legend.position = "inside", legend.position.inside = c(0.8,0.4)) +
  no_axes + ggtitle("Expected Number of Cases") + labs(fill = "Cases")
```


Expected Number of Cases


```
p <- ggplot(dcounty, aes(x = long, y = lat, group = group)) + coord_fixed(1.3) +
   geom_polygon(aes(fill = smr), color = "black", linewidth = 0.25) +
   scale_fill_gradient(low = grey(0.95), high = grey(0.25), na.value = "pink") +
   theme(legend.position = "inside", legend.position.inside = c(0.8,0.4)) +
   no_axes + ggtitle("Standardized Mortality Ratio") + labs(fill = "SMR")

plot(p)</pre>
```


Standardized Mortality Ratio


```
p <- ggplot(dcounty, aes(x = long, y = lat, group = group)) + coord_fixed(1.3) +
    geom_polygon(aes(fill = radon), color = "black", linewidth = 0.25) +
    scale_fill_gradient(low = grey(0.95), high = grey(0.25), na.value = "pink") +
    theme(legend.position = "inside", legend.position.inside = c(0.8,0.4)) +
    no_axes + ggtitle("Average Radon (pCi/liter)") + labs(fill = "Radon")

plot(p)</pre>
```

Average Radon (pCi/liter)

How does the expected SMR relate to radon? Consider the Poisson regression model

$$\log E(Y_i/E_i) = \beta_0 + \beta_1 r_i,$$

where Y_i and E_i are the observed and expected number of lung cancer deaths (or cases), respectively, in the *i*-th county, and r_i is the average radon exposure in the *i*-th county. Here Y_i/E_i is the SMR for the *i*-th county. We can also write this model as

$$\log E(Y_i) = \log E_i + \beta_0 + \beta_1 r_i,$$

so $\log E_i$ is an offset.

```
m <- glm(obs ~ offset(log(exp)) + radon, family = poisson, data = dcounty)
summary(m)$coefficients</pre>
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2107 0.00562 37.5 6.95e-308
radon -0.0421 0.00119 -35.2 4.37e-272
exp(cbind(coef(m), confint(m)))
```

```
2.5 % 97.5 % (Intercept) 1.235 1.221 1.248 radon 0.959 0.957 0.961
```

We should be careful and remember the ecological fallacy which states that relationships at the group level (e.g., county) do not necessarily hold at the individual level. Radon may be related to other variables (e.g., smoking) that affect the risk of lung cancer.