Friday, February 28

Poisson Regression for Rates

The i-th observed rate R; can be written as
R; = C;/8S;,

where C; is a count and S; is the “size” of the interval in which the counts are observed. Examples include
fish per minute, epileptic episodes per day, or defects per (square) meter. In some cases S; is referred to as
the “exposure” of the i-th observation.

Assume that the count C; has a Poisson distribution and that

E(C;) = Siexp(Bo + Brxin + - - + Brxir),

Ai

where ); is the expected count per unit (e.g., per minute) so that S;\; is then the expected count per S;
(e.g., per hour if S; = 60, per day if S; = 1440, or per second if S; = 1/60). The expected rate is then

E(R;) = E(C;/S;) = E(C;)/Si = exp(Bo + frxin + -+ + Brtir),

if we treat exposure as fized (like we do x;1, xi2, ...,z ). But rather than using R; as the response variable
we can use C; as the response variable in a Poisson regression model where

E(C;) = Siexp(Bo + Brxin + - - - + Brxir) = exp(Bo + Brs1 + - - + Prwix + log S;),

and where log S; is an “offset” variable (i.e., basically an explanatory variable where it’s 3; is “fixed” at one).

Note: If S; is a constant for all observations so that S; = S then we can write the model as
E(C;) = exp(fo + frxir + - + Buwir +10gS;) = exp(By + Brzir + Baxiz + -+ + Brxik),

where 55 = log(S) + Bo so that the offset is “absorbed” into By, and we do not need to be concerned about it.
Including an offset is only necessary if \S; is not the same for all observations.

Variance of Rates

Using rates as response variables in a linear or nonlinear model without accounting for S; is not advisable
because of heteroscedasticity due to unequal S;.

We have that F(R;) = E(C;)/S;. But
Var(R;) = Var(Ci/S;) = Var(C;)/S; = E(R;)S:/S; = E(R;)/S;

because (a) Var(Y/c) = Var(Y)/c? if ¢ is a constant, Var(C;) = E(C;) because C; has a Poisson distribution,
and thus E(C;) = E(R;)S;. Thus the variance of the rate depends on the expected response and S; (so
larger/smaller S;, then smaller/larger variance of R;).

We can deal with this heteroscedasticity by either (a) using an appropriate offset variable in Poisson regression
or a related model or (b) using weights of w; = S;/FE(R;) in an iteratively weighted least squares with weights
of w; = Sz/@z



Modeling Rates with Poisson Regression

Software for GLMs (and sometimes linear models) will often permit specification of an offset variable. In R
this is done using offset in the model formula.

Example: Consider the following data from an observational study of auto accidents.

library(trtools)
head(accidents)

accidents years location treatment

1 13 9 a before
2 6 9 b before
3 30 8 c before
4 20 8 d before
5 10 9 e before
6 15 8 f before

p <- ggplot(accidents, aes(x = location, y = accidents/years)) +
geom_point (aes(size = years, color = treatment)) +

labs(x = "Location", y = "Accidents per Year",
size = "Years", color = "Treatment") + theme_minimal()
plot(p)
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m <- glm(accidents ~ location + treatment + offset(log(years)),
data = accidents, family = poisson)
cbind (summary (m) $coefficients, confint(m))

Estimate Std. Error z value Pr(>|zl) 2.5 % 97.5 %
(Intercept) -0.510 0.373 -1.366 0.17207 -1.2924 0.177



locationb -0.486 0.449 -1.080 0.27994 -1.4122 0.378
locationc 1.018 0.326 3.117 0.00182 0.4027 1.694
locationd 0.537 0.356 1.507 0.13168 -0.1510 1.260
locatione -0.262 0.421 -0.624 0.53279 -1.1136 0.559
locationf 0.586 0.353 1.660 0.09690 -0.0939 1.304
locationg -0.486 0.449 -1.080 0.27994 -1.4122 0.378
locationh 0.199 0.379 0.526 0.59921 -0.5459 0.958
treatmentbefore 0.781 0.275 2.834 0.00459 0.2741 1.362
exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 0.601 0.275 1.19
locationb 0.615 0.244 1.46
locationc 2.767 1.496 5.44
locationd 1.711 0.860 3.53
locatione 0.769 0.328 1.75
locationf 1.797 0.910 3.68
locationg 0.615 0.244 1.46
locationh 1.221 0.579 2.61
treatmentbefore 2.183 1.315 3.90

When using other tools like contrast or functions from the emmeans package, be sure to specify the offset.
Typically we would use a value of one corresponding to one unit of whatever the offset represents (e.g., space
or time). Here are the rate ratios for the treatment.

trtools: :contrast (m,
a = list(treatment = "before", location = letters[1:8], years = 1),
b = list(treatment = "after", location = letters[1:8], years = 1),
cnames = letters[1:8], tf = exp)

estimate lower upper

a 2.18 1.27 3.75
b 2.18 1.27 3.75
c 2.18 1.27 3.75
d 2.18 1.27 3.75
e 2.18 1.27 3.75
f 2.18 1.27 3.75
g 2.18 1.27 3.75
h 2.18 1.27 3.75

trtools: :contrast (m,
a = list(treatment "after", location = letters[1:8], years = 1),
b = list(treatment = "before", location = letters[1:8], years = 1),
cnames = letters[1:8], tf = exp)

estimate lower upper

a 0.458 0.267 0.786
b 0.458 0.267 0.786
C 0.458 0.267 0.786
d 0.458 0.267 0.786
e 0.458 0.267 0.786
f 0.458 0.267 0.786
g 0.458 0.267 0.786
h 0.458 0.267 0.786

Here are the estimated expected number of accidents per year at location a.



trtools::contrast(m, a = list(treatment = c("before","after"), location = "a", years = 1),
cnames = c("before","after"), tf = exp)
estimate lower upper
before 1.311 0.759 2.26
after 0.601 0.289 1.25
Here are the estimated expected number of accidents per decade at location a.
trtools::contrast(m, a = list(treatment = c("before","after"), location = "a", years = 10),

cnames = c("before","after"), tf = exp)
estimate lower upper

13.11 7.59 22.6

6.01 2.89 12.5

before
after

When using functions from the emmeans package we use the offset argument with the value specified on

the log scale. Here are the estimated number of accidents per decade.

library (emmeans)
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location = h:

treatment rate SE df asymp.LCL asymp.UCL
after 7.3 2.56 Inf 3.70 14.5
before 16.0 4.18 Inf 9.59 26.7

Confidence level used: 0.95
Intervals are back-transformed from the log scale

Here is the rate ratio for the effect of treatment.

pairs(emmeans(m, ~treatment|location, type = "response", offset = log(10)), infer = TRUE)

location = a:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

location = b:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

location = c:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

location = d:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

location = e:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

location = f:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

location = g:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

location = h:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

Use reverse = TRUE to “flip” the rate ratio. Also for rate ratios the size of the offset does not matter since
it “cancels-out” in the ratio. Also since there is no interaction in this model which means the rate ratio does
not depend on location, we can omit it when using emmeans (but not contrast).

pairs(emmeans(m, ~treatment, type = "response"), infer = TRUE)

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value



after / before 0.458 0.126 Inf 0.267 0.786 1 -2.834 0.0046

Results are averaged over the levels of: location
Confidence level used: 0.95

Intervals are back-transformed from the log scale
Tests are performed on the log scale

When using predict we need to be sure to also include the offset amount. Again, we would use a value of
one assuming we want the number of events per unit space/time.

d <- expand.grid(treatment = c("before","after"), location = letters[1:8], years = 1)
d$yhat <- predict(m, newdata = d, type = "response")
head(d)

treatment location years yhat

1 before a 1 1.311
2 after a 1 0.601
3 before b 1 0.807
4 after b 1 0.370
5 before ¢ 1 3.627
6 after C 1 1.662
p <- ggplot(accidents, aes(x = location, y = accidents/years)) +
geom_point(aes(size = years, color = treatment)) +
labs(x = "Location", y = "Accidents per Year",
size = "Years", color = "Treatment") + theme_minimal() +

geom_point(aes(y = yhat, color = treatment), data = d) +
geom_line(aes(y = yhat, group = treatment, color = treatment), data = d)
plot(p)
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We can use the glmint function from the trtools package if we want to produce confidence intervals for
plots.

d <- expand.grid(treatment = c("before","after"), location = letters[1:8], years = 1)
d$yhat <- predict(m, newdata = d, type = "response")
glmint(m, newdata = d)

fit low upp

1 1.311 0.759 2.263
2 0.601 0.289 1.248
3 0.807 0.403 1.616
4 0.370 0.158 0.864
5 3.627 2.568 5.123
6 1.662 0.939 2.939
7 2.243 1.442 3.489
8 1.028 0.535 1.975
9 1.008 0.542 1.878
10 0.462 0.210 1.018
11 2.355 1.530 3.625
12 1.079 0.565 2.059
13 0.807 0.403 1.616
14 0.370 0.158 0.864
15 1.600 0.959 2.671
16 0.733 0.370 1.453

cbind(d, glmint(m, newdata = d))

treatment location years yhat  fit low upp

1 before a 11.311 1.311 0.759 2.263
2 after a 1 0.601 0.601 0.289 1.248
3 before b 1 0.807 0.807 0.403 1.616
4 after b 1 0.370 0.370 0.158 0.864
5 before c 1 3.627 3.627 2.568 5.123
6 after c 1 1.662 1.662 0.939 2.939
7 before d 1 2.243 2.243 1.442 3.489
8 after d 1 1.028 1.028 0.535 1.975
9 before e 1 1.008 1.008 0.542 1.878

10 after e 1 0.462 0.462 0.210 1.018

11 before f 1 2.355 2.355 1.530 3.625

12 after £ 1 1.079 1.079 0.565 2.059

13 before g 1 0.807 0.807 0.403 1.616

14 after g 1 0.370 0.370 0.158 0.864

15 before h 1 1.600 1.600 0.959 2.671

16 after h 1 0.733 0.733 0.370 1.453

d <- cbind(d, glmint(m, newdata = d))

p <- ggplot(accidents, aes(x = location)) +
geom_point(aes(y = accidents/years, size = years), shape = 21, fill = "white") +
facet_wrap(~ treatment) + theme_minimal() +
labs(x = "Location", y = "Accidents per Year", size = "Years") +

geom_errorbar(aes(ymin = low, ymax = upp), data = d, width = 0.5) +
geom_point(aes(y = fit), data = d)
plot(p)
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<- ggplot(accidents, aes(x = location, color = treatment)) +
geom_point (aes(y = accidents/years, size = years),

position = position_dodge(width = 0.6), shape = 21, fill = "white") +
labs(x = "Location", y = "Accidents per Year",

size = "Years", color = "Treatment") + theme_minimal() +
geom_errorbar(aes(ymin = low, ymax = upp), data = d,

position = position_dodge(width = 0.6), width = 0.5) +
geom_point (aes(y = fit), data = d, position = position_dodge(width = 0.6))
plot(p)
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Example: Consider the following data from an observational study that investigated the possible effect of
the development of a commercial fishery on deep sea fish abundance. The figure below shows the number of
fish per square meter of swept area from 147 trawls by mean depth in meters, and by whether the trawl was
during one of two periods. The 1977-1989 period was from before the development of a commercial fishery,
and the period 2000-2002 was when the fishery was active.

library (COUNT)
data(fishing)
head (fishing)

site totabund
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p <- ggplot(fishing, aes(x

labs(x =

76
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695
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0

density meandepth

.002070
.003520
.000981
.008039
.005933
.021801
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808
809
848
853
960

year
1978
2001
2001
1979
2002
1980

period sweptarea

1977-1989
2000-2002
2000-2002
1977-1989
2000-2002
1977-1989

y = "Fish Caught Per Square Meter Trawled")

plot(p)
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meandepth, y = totabund/sweptarea)) +
geom_point (alpha = 0.5) + facet_wrap(~ period) + theme_minimal() +
"Mean Trawl Depth (meters)",
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An appropriate model for these data might be as follows.

m <- glm(totabund ~ period * meandepth + offset(log(sweptarea)),
family = poisson, data = fishing)
summary (m) $coefficients

Estimate Std. Error z value Pr(>lzl)

(Intercept) -3.422819 1.49e-02 -229.67 0.00e+00
period2000-2002 -0.771117  2.97e-02 -25.94 2.55e-148
meandepth -0.000971 7.96e-06 -121.94 0.00e+00

period2000-2002:meandepth 0.000132 1.52e-05 8.65 5.09e-18

d <- expand.grid(sweptarea = 1, period = c("1977-1989","2000-2002"),
meandepth = seq(800, 5000, length = 100))
d$yhat <- predict(m, newdata = d, type = "response")

p <- p + geom_line(aes(y = yhat), data = d)
plot(p)
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What is the expected number of fish per square meter in 1977-1989 at depths of 1000, 2000, 3000, 4000, and
5000 meters? What is it in 2000-20027

trtools::contrast(m,
a = list(sweptarea = 1,
meandepth = ¢(1000,2000,3000,4000,5000), period = "1977-1989"),
cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)

estimate lower upper
1000m 0.012350 0.012147 0.012556
2000m 0.004676 0.004613 0.004739
3000m 0.001770 0.001728 0.001813
4000m 0.000670 0.000645 0.000696
5000m 0.000254 0.000241 0.000268

trtools::contrast(m,
a = list(sweptarea = 1,
meandepth = ¢(1000,2000,3000,4000,5000), period = "2000-2002"),
cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)

estimate lower upper
1000m 0.006517 0.006325 0.006714
2000m 0.002815 0.002751 0.002881
3000m 0.001216 0.001170 0.001263
4000m 0.000525 0.000494 0.000558
5000m 0.000227 0.000208 0.000247

Here is how we can do that with emmeans.
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library (emmeans)
emmeans (m, ~meandepth|period, at = list(meandepth = seq(1000, 5000, by = 1000)),
type = "response", offset = log(1l))

period = 1977-1989:

meandepth rate SE df asymp.LCL asymp.UCL
1000 0.01235 1.04e-04 Inf 0.01215 0.01256
2000 0.00468 3.23e-05 Inf 0.00461 0.00474
3000 0.00177 2.17e-05 Inf 0.00173 0.00181
4000 0.00067 1.31e-05 Inf 0.00065 0.00070
5000 0.00025 6.90e-06 Inf 0.00024 0.00027

period = 2000-2002:

meandepth rate SE df asymp.LCL asymp.UCL
1000 0.00652 9.91e-05 Inf 0.00633 0.00671
2000 0.00281 3.31e-05 Inf 0.00275 0.00288
3000 0.00122 2.38e-05 Inf 0.00117 0.00126
4000 0.00053 1.63e-05 Inf 0.00049 0.00056
5000 0.00023 9.80e-06 Inf 0.00021  0.00025

Confidence level used: 0.95
Intervals are back-transformed from the log scale

Note that we can change the units of swept area very easily here. There are 10,000 square meters in a hectare.
Here are the expected number of fish per hectare.

trtools: :contrast(m,
a = list(sweptarea = 10000,
meandepth = ¢(1000,2000,3000,4000,5000), period = "1977-1989"),
cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)

estimate lower upper
1000m  123.50 121.47 125.56
2000m 46.76 46.13 47.39
3000m 17.70 17.28 18.13
4000m 6.70 6.45 6.96
5000m 2.54 2.41 2.68

trtools: :contrast(m,
a = list(sweptarea = 10000,
meandepth = c(1000,2000,3000,4000,5000), period = "2000-2002"),
cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)

estimate lower upper
1000m 65.17 63.25 67.14
2000m 28.15 27.51 28.81
3000m 12.16 11.70 12.63
4000m 5.25 4.94 5.58
5000m 2.27 2.08 2.47

emmeans (m, ~meandepth|period, at = list(meandepth = seq(1000, 5000, by = 1000)),
type = "response", offset = 1log(10000))

period = 1977-1989:
meandepth rate SE df asymp.LCL asymp.UCL
1000 123.5 1.040 Inf 121.5 125.6

12



2000 46.8 0.323 Inf 46.1 47.4
3000 17.7 0.217 Inf 17.3 18.1
4000 6.7 0.131 Inf 6.5 7.0
5000 2.5 0.069 Inf 2.4 2.7

period = 2000-2002:
meandepth rate SE df asymp.LCL asymp.UCL

1000 65.2 0.991 Inf 63.3 67.1
2000 28.1 0.331 Inf 27.5 28.8
3000 12.2 0.238 Inf 11.7 12.6
4000 5.3 0.163 Inf 4.9 5.6
5000 2.3 0.098 Inf 2.1 2.5

Confidence level used: 0.95
Intervals are back-transformed from the log scale

What is the rate ratio of fish per square meter in 2000-2002 versus 1977-1989 at 1000, 2000, 3000, 4000, and
5000 meters?

trtools: :contrast(m,
a = list(sweptarea = 1, meandepth = c¢(1000,2000,3000,4000,5000), period
b = list(sweptarea = 1, meandepth = ¢(1000,2000,3000,4000,5000), period
cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)

"2000-2002"),
"1977-1989"),

estimate lower upper
1000m 0.528 0.510 0.546
2000m 0.602 0.586 0.618
3000m 0.687 0.656 0.719
4000m 0.784 0.729 0.842
5000m 0.894 0.809 0.989

Here it is for 1977-1989 versus 2000-2002.

trtools: :contrast (m,
a = list(sweptarea = 1, meandepth = c(1000,2000,3000,4000,5000), period = "1977-1989"),
b = list(sweptarea = 1, meandepth = ¢(1000,2000,3000,4000,5000), period "2000-2002"),
cnames = c("1000m","2000m","3000m","4000m","5000m"), tf = exp)

estimate lower upper

1000m 1.90 1.83 1.96
2000m 1.66 1.62 1.71
3000m 1.46 1.39 1.52
4000m 1.28 1.19 1.37
5000m 1.12 1.01 1.24

Now using emmeans.

pairs(emmeans(m, ~meandepth*period, at = list(meandepth = seq(1000, 5000, by = 1000)),
type = "response", offset = log(l)), by = "meandepth", infer = TRUE)

meandepth = 1000:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
(1977-1989) / (2000-2002) 1.90 0.0330 Inf 1.83 1.96 1 36.700 <.0001

meandepth = 2000:

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
(1977-1989) / (2000-2002) 1.66 0.0227 Inf 1.62 1.71 1 37.200 <.0001
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meandepth = 3000:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
(1977-1989) / (2000-2002) 1.46 0.0336 Inf 1.39 1.52 1 16.300 <.0001

meandepth = 4000:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
(1977-1989) / (2000-2002) 1.28 0.0468 Inf 1.19 1.37 1 6.600 <.0001

meandepth = 5000:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
(1977-1989) / (2000-2002) 1.12 0.0573 Inf 1.01 1.24 1 2.200 0.0288

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

How does the expected number of fish per square meter change per 1000m of depth?

# increasing depth by 1000m

trtools: :contrast(m,
a = list(sweptarea = 1, meandepth = 2000, period
b = list(sweptarea = 1, meandepth = 1000, period
cnames = c("1977-1989","2000-2002"), tf = exp)

c("1977-1989","2000-2002")),
c("1977-1989","2000-2002")),

estimate lower upper
1977-1989 0.379 0.373 0.385
2000-2002 0.432 0.421 0.443

# decreasing depth by 1000m

trtools: :contrast (m,
a = list(sweptarea = 1, meandepth = 1000, period
b = list(sweptarea = 1, meandepth = 2000, period
cnames = c("1977-1989","2000-2002"), tf = exp)

c("1977-1989","2000-2002")),
c("1977-1989","2000-2002") ),

estimate lower upper
1977-1989 2.64 2.60 2.68
2000-2002 2.32 2.26 2.37

Here is how to do the latter with emmeans.

pairs(emmeans(m, ~meandepth*period, at = list(meandepth = c(1000,2000)),
offset = log(l), type = "response"), by = "period", infer = TRUE)

period = 1977-1989:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
meandepth1000 / meandepth2000 2.64 0.0210 Inf 2.60 2.68 1 121.900 <.0001

period = 2000-2002:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
meandepth1000 / meandepth2000 2.31 0.0301 Inf 2.26 2.38 1 64.600 <.0001

Confidence level used: 0.95

Intervals are back-transformed from the log scale
Tests are performed on the log scale
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Standardized Mortality Ratios

In epidemiology, the standardized mortality ratio (SMR) is the ratio of the observed number of deaths and
the (estimated) expected number of deaths. Poisson regression with an offset can be used to model the SMR
to determine if the number of deaths tends to be higher or lower than we would expect.

Example: Here is an example of an observational study using a Poisson regression model to investigate the
relationship between lung cancer and radon exposure in counties in Minnesota.

Note: The data manipulation and plotting is quite a bit more complicated than what you will normally see
in this class, but I have included it in case you might be interested to see the code.

First we will process the data containing the observed and expected number of deaths due to lung cancer,
where the latter are based on the known distribution of age and gender in the county.

lung <- read.table("http://faculty.washington.edu/jonno/book/MNlung.txt",
header = TRUE, sep = "\t") %>%
mutate(obs = obs.M + obs.F, exp = exp.M + exp.F) %>
dplyr: :select(X, County, obs, exp) %>
rename (county = County) %>%
mutate(county = tolower(county)) %>%
mutate(county = ifelse(county == "red", "red lake", county))
head (lung)

county obs  exp
aitkin 92 76.
anoka 677 600.
becker 105 107.
beltrami 101 105.
benton 61 81.

6 big stone 32 27.

DO WN -
O WN - X
b N © 01 ©o

Now we will read in data to estimate the average radon exposure of residents of each county.

radon <- read.table("http://faculty.washington.edu/jonno/book/MNradon.txt",
header = TRUE) %>}, group_by(county) %>%
summarize(radon = mean(radon)) %>’ rename(X = county)

head(radon)

# A tibble: 6 x 2

X radon

<int> <dbl>

1 1 2.08
2 2 3.21
3 3 3.18
4 4 3.66
5 5 3.78
6 6 4.93

Next we merge the two data frames.

radon <- left_join(lung, radon) %>’ dplyr::select(-X)
head (radon)

county obs  exp radon
aitkin 92 76.9 2.08
anoka 677 600.5 3.21
becker 105 107.9 3.17
beltrami 101 105.7 3.66

W N e
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5 benton 61 81.4 3.77
6 big stone 32 27.4 4.93

For fun we can make some plots of the data by county.

library(maps)

dstate <- map_data("state") %>%
filter(region == "minnesota')

dcounty <- map_data("county") %>%
filter(region == "minnesota") %>%
rename (county = subregion)

dcounty <- left_join(dcounty, radon) %>%
mutate(smr = obs/exp)

no_axes <- theme_minimal() + theme(
axis.text = element_blank(),
axis.line = element_blank(),
axis.ticks = element_blank(),
panel.border = element_blank(),
panel.grid = element_blank(),
axis.title = element_blank()

p <- ggplot(dcounty, aes(x = long, y = lat, group = group)) + coord_fixed(1.3) +
geom_polygon(aes(fill = exp), color = "black", linewidth = 0.25) +
scale_fill_gradient(low = grey(0.95), high = grey(0.25),

trans = "loglO", na.value = "pink") +
theme (legend.position = "inside", legend.position.inside = c(0.8,0.4)) +
no_axes + ggtitle("Expected Number of Cases") + labs(fill = "Cases")

plot(p)
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p <- ggplot(dcounty, aes(x = long, y = lat, group = group)) + coord_fixed(1.3) +
geom_polygon(aes(fill = smr), color = "black", linewidth = 0.25) +
scale_fill_gradient(low = grey(0.95), high = grey(0.25), na.value = "pink") +
theme (legend.position = "inside", legend.position.inside = c¢(0.8,0.4)) +
no_axes + ggtitle("Standardized Mortality Ratio") + labs(fill = "SMR")

plot(p)
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Standardized Mortality Ratio
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p <- ggplot(dcounty, aes(x = long, y = lat, group = group)) + coord_fixed(1.3) +
geom_polygon(aes(fill = radon), color = "black", linewidth = 0.25) +
scale_fill_gradient(low = grey(0.95), high = grey(0.25), na.value = "pink") +
theme (legend.position = "inside", legend.position.inside = c¢(0.8,0.4)) +
no_axes + ggtitle("Average Radon (pCi/liter)") + labs(fill = "Radon")

plot(p)

18



Average Radon (pCil/liter)

Radon

10

How does the expected SMR relate to radon? Consider the Poisson regression model
log E(Y;/E;i) = Bo + Biri,

where Y; and E; are the observed and expected number of lung cancer deaths (or cases), respectively, in the
i-th county, and r; is the average radon exposure in the i-th county. Here Y;/FE; is the SMR for the i-th
county. We can also write this model as

log E(Y;) = log E; + o + piri,

so log E; is an offset.

m <- glm(obs ~ offset(log(exp)) + radon, family = poisson, data = dcounty)
summary (m) $coefficients

Estimate Std. Error z value Pr(>|zl)
(Intercept) 0.2107 0.00562 37.5 6.95e-308
radon -0.0421 0.00119 -35.2 4.37e-272

exp(cbind(coef (m), confint(m)))
2.6 % 97.5 %

(Intercept) 1.235 1.221 1.248
radon 0.959 0.957 0.961

We should be careful and remember the ecological fallacy which states that relationships at the group level
(e.g., county) do not necessarily hold at the individual level. Radon may be related to other variables (e.g.,
smoking) that affect the risk of lung cancer.
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