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Parameter Interpretation With Log Link Functions
A GLM with a log link function, like a Poisson regression model, has the form

log E(Yi) = β0 + β1xi1 + β2xi2 + · · · + βkxik,

or
E(Yi) = exp(β0 + β1xi1 + β2xi2 + · · · + βkxik),

which can also be written as a “multiplicative model” of the form

E(Yi) = eβ0eβ1xi1eβ2xi2 · · · eβkxik .

Recall that ea+b = eaeb. For this reason the parameters β1, β2, . . . , βk or linear functions thereof are not
interpreted the same way as in the additive model

E(Yi) = β0 + β1xi1 + β2xi2 + · · · + βkxik,

but they are still relatively easy to interpret in terms of multiplicative rather than additive changes in E(Y ).

Rate Ratios (Quantitative Explanatory Variable)
Consider the model

log E(Y ) = β0 + β1x,

and let
log E(Ya) = β0 + β1(x + 1) and log E(Yb) = β0 + β1x

for an arbitrary value of x. Then the difference in the log of the expected values is

log E(Ya) − log E(Yb) = β0 + β1(x + 1)︸ ︷︷ ︸
log E(Ya)

− (β0 + β1x)︸ ︷︷ ︸
log E(Yb)

= β1,

meaning that β1 is the additive change in log E(Y ) per unit increase in x.

Now consider the same model written as
E(Y ) = eβ0eβ1x,

and let
E(Ya) = eβ0eβ1(x+1) and E(Yb) = eβ0eβ1x

for an arbitrary value of x. Then the ratio of the expected values is

E(Ya)
E(Yb) =

E(Ya)︷ ︸︸ ︷
eβ0eβ1(x+1)

eβ0eβ1x︸ ︷︷ ︸
E(Yb)

= eβ0eβ1xeβ1

eβ0eβ1x
= eβ1 ⇒ E(Ya) = E(Yb)eβ1 ,

so that E(Y ) changes by a factor of eβ1 per unit increase in x. The “exponentiated” parameter, eβ1 , is
sometimes called a “rate ratio” because it is often the ratio of two rates when the counts are per unit space,
time, or something else.

Example: Consider again the ceriodaphniastrain data and model.
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library(trtools)
ceriodaphniastrain$strainf <- factor(ceriodaphniastrain$strain,

labels = c("a","b"))
m <- glm(count ~ concentration + strainf,

family = poisson, data = ceriodaphniastrain) # log link is default
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) 4.455 0.0391 113.82 0.00e+00 4.38 4.53
concentration -1.543 0.0466 -33.11 2.06e-240 -1.63 -1.45
strainfb -0.275 0.0484 -5.68 1.31e-08 -0.37 -0.18

exp(cbind(coef(m), confint(m))) # coef extracts the parameter estimates only

2.5 % 97.5 %
(Intercept) 86.025 79.615 92.817
concentration 0.214 0.195 0.234
strainfb 0.760 0.691 0.835

Note: It only makes sense to apply the exponential function to the point estimates and the endpoints of
the confidence interval. A standard error of eβ̂1 could be obtained, but it is not equal to the exponentiated
standard error of β̂1. A test concerning eβ1 can be done using either the confidence interval or by stated
the hypotheses in terms of β1 (e.g., the null hypothesis that eβ1 = 1 is the same as the null hypothesis that
β1 = 0).

Another approach is to use lincon and the tf (transformation function) argument.
lincon(m, tf = exp)

estimate lower upper
(Intercept) 86.025 79.673 92.884
concentration 0.214 0.195 0.234
strainfb 0.760 0.691 0.835

Note that the confidence interval endpoints are not quite the same as what we obtained using confint. This
is because confint and lincon use different approaches to confidence intervals (more on that later).

Example: Consider a model for the expected number of matings of African elephants as a function of age.
library(Sleuth3)
head(case2201)

Age Matings
1 27 0
2 28 1
3 28 1
4 28 1
5 28 3
6 29 0

m <- glm(Matings ~ Age, family = poisson, data = case2201)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) -1.5820 0.5446 -2.9 3.68e-03 -2.6667 -0.5289
Age 0.0687 0.0137 5.0 5.81e-07 0.0417 0.0956

exp(cbind(m$coefficients, confint(m)))
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2.5 % 97.5 %
(Intercept) 0.206 0.0695 0.589
Age 1.071 1.0426 1.100

Percent Change (Quantitative Explanatory Variable)
The percent change in the expected response is

100% ×
[

E(Ya) − E(Yb)
E(Yb)

]
= 100% × [E(Ya)/E(Yb) − 1] ,

where E(Ya) and E(Yb) are the expected responses at two different points (a and b) defined in terms of the
explanatory variable(s).

1. Note that if this is positive then it is a percent increase, whereas if it is negative then it is a percent
decrease.

2. The ratio E(Ya)/E(Yb) is the rate ratio.

Example: Suppose we have the model log E(Y ) = β0 + β1x where x is a quantitative variable and β1 = 0.22.
Then eβ1 ≈ 1.25. So when x increases by one unit (i.e., to x + 1), — i.e., from E(Yb) = eβ0eβ1x to
E(Ya) = eβ0eβ1(x+1) then the expected response increases by a factor of

E(Ya)/E(Yb) = eβ1 ≈ 1.25,

and because
100% × [1.25 − 1] = 25%.

we can say that it increases by 25%.

Example: Consider again the model for the elephant mating data.
m <- glm(Matings ~ Age, family = poisson, data = case2201)
exp(cbind(m$coefficients, confint(m)))

2.5 % 97.5 %
(Intercept) 0.206 0.0695 0.589
Age 1.071 1.0426 1.100

The percent change in the expected count per unit (year) increase in Age is approximately 100%(1.07 - 1) =
7% (i.e., a 7% increase).

Example: Suppose we have the model log E(Y ) = β0 + β1x where x is a quantitative variable and
β1 = −0.22. Then eβ1 ≈ 0.8. So when x increases by one unit (i.e., to x + 1), — i.e., from E(Yb) = eβ0eβ1x

to E(Ya) = eβ0eβ1(x+1) then the expected response decreases by a factor of

E(Ya)/E(Yb) = eβ1 ≈ 0.8,

or because
100% × [0.8 − 1] = −20%

we can say that it decreases by 20%.

Example: Consider again the model for the ceriodaphniastrain data.
m <- glm(count ~ concentration + strainf, family = poisson, data = ceriodaphniastrain)
exp(cbind(coef(m), confint(m)))
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2.5 % 97.5 %
(Intercept) 86.025 79.615 92.817
concentration 0.214 0.195 0.234
strainfb 0.760 0.691 0.835

The percent change in the expected count per unit increase in concentration is approximately 100%(0.21 - 1)
= -79% (i.e., a 79% decrease or reduction).

Rate Ratios (Categorical Explanatory Variable)
Consider the model

log E(Y ) = β0 + β1x, or, equivalently, E(Y ) = eβ0eβ1x,

where

x =
{

1, if the observation is in group a,

0, if the observation is in group b.

Then

E(Y ) =
{

eβ0eβ1 , if the observation is in group a,

eβ0 , if the observation is in group b.

Let
E(Ya) = eβ0eβ1 and E(Yb) = eβ0 .

Then the ratio of the expected values is

E(Ya)
E(Yb) = eβ0eβ1

eβ0
= eβ1 ⇔ E(Ya) = E(Yb)eβ1

so that E(Ya) is eβ1 times that of E(Yb). Also

E(Yb)
E(Ya) = eβ0

eβ0eβ1
= 1

eβ1
= e−β1 .

so that E(Yb) is 1/eβ1 times that of E(Ya).

Example: Consider again the ceriodaphniastrain data and model.
m <- glm(count ~ concentration + strainf,

family = poisson, data = ceriodaphniastrain)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) 4.455 0.0391 113.82 0.00e+00 4.38 4.53
concentration -1.543 0.0466 -33.11 2.06e-240 -1.63 -1.45
strainfb -0.275 0.0484 -5.68 1.31e-08 -0.37 -0.18

exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 86.025 79.615 92.817
concentration 0.214 0.195 0.234
strainfb 0.760 0.691 0.835

Alternatively we can parameterize the model.
ceriodaphniastrain$strainf <- relevel(ceriodaphniastrain$strainf, ref = "b")
m <- glm(count ~ concentration + strainf,

family = poisson, data = ceriodaphniastrain)
cbind(summary(m)$coefficients, confint(m))
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Estimate Std. Error z value Pr(>|z|) 2.5 % 97.5 %
(Intercept) 4.180 0.0430 97.14 0.00e+00 4.09 4.26
concentration -1.543 0.0466 -33.11 2.06e-240 -1.63 -1.45
strainfa 0.275 0.0484 5.68 1.31e-08 0.18 0.37

exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 65.344 60.008 71.034
concentration 0.214 0.195 0.234
strainfa 1.316 1.198 1.448

Example: Consider these data from a stratified random sampling design and a Poisson regression model.
library(trtools)
library(ggplot2)
p <- ggplot(daphniastrat, aes(x = layer, y = count)) +

geom_dotplot(binaxis = "y", binwidth = 1, stackdir = "center") +
labs(x = "Layer", y = "Number of Daphnia") + theme_minimal()

plot(p)
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daphniastrat$layer <- relevel(daphniastrat$layer, ref = "thermocline")
m <- glm(count ~ layer, family = poisson, data = daphniastrat)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.425 0.0941 25.78 1.65e-146
layerepilimnion 0.546 0.1068 5.11 3.27e-07
layerhypolimnion -1.875 0.2175 -8.62 6.74e-18

exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
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(Intercept) 11.300 9.3425 13.513
layerepilimnion 1.726 1.4050 2.137
layerhypolimnion 0.153 0.0981 0.231

Percent Larger/Smaller (Categorical Explanatory Variable)
The percent change in the expected response is

100% ×
[

E(Ya) − E(Yb)
E(Yb)

]
= 100% × [E(Ya)/E(Yb) − 1] ,

where E(Ya) and E(Yb) are the expected responses at two different points (a and b) defined in terms of the
explanatory variable(s).

1. Note that if this is positive then E(Ya) is that percent larger than E(Yb), whereas if this is negative
then E(Yb) is that percent smaller than E(Ya).

2. The ratio E(Ya)/E(Yb) is the rate ratio.

Example: Suppose we have the model log E(Y ) = β0 + β1x where x is an indicator variable for category
a and β1 = 0.22. Then eβ1 ≈ 1.25, E(Ya) = eβ0eβ1 and E(Yb) = eβ0 , and E(Ya) is about 1.25 times larger
than E(Yb) because

E(Ya)/E(Yb) = eβ1 ≈ 1.25,

and because
100% × [1.25 − 1] = 25%.

we can say that E(Ya) is about 25% larger than E(Yb).

Example: Suppose we have the model log E(Y ) = β0 + β1x where x is an indicator variable for category a
and β1 = −0.22. Then eβ1 ≈ 0.8, E(Ya) = eβ0eβ1 and E(Yb) = eβ0 , and E(Ya) is about 0.8 times smaller
than E(Yb) because

E(Ya)/E(Yb) = eβ1 ≈ 0.8,

and because
100% × [0.8 − 1] = −20%.

we can say that E(Ya) is about 20% smaller than E(Yb).

Example: Consider again the model for the daphnia data.
exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 11.300 9.3425 13.513
layerepilimnion 1.726 1.4050 2.137
layerhypolimnion 0.153 0.0981 0.231

The expected number of daphnia per liter in the epilimnion layer is estimated to be about 100%(1.73-1)
= 73% more than in the thermocline layer. And because 100%(0.15-1) = -85% we estimate that the the
expected number of daphia per liter in the hypolimnion layer is 85% less than it is in the thermocline layer.

Contrasts With Log Link Functions
With a log link function a “contrast” as produced by the contrast function has the general form

log E(Ya) − log E(Yb) = log
[

E(Ya)
E(Yb)

]
,
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where the indices a and b denote specific values of the explanatory variables. If we apply the exponential
function to the contrast then it becomes

exp[log E(Ya) − log E(Yb)] = E(Ya)
E(Yb) ,

So applying the exponential function to contrasts allows us to interpret them as ratios.

Example: Consider again the stratified random sampling design. Suppose we want to compare the epilimnion
and thermocline layers to the hypolimnion layer. We can use contrast and apply the exponential function
(exp in R) through the argument tf (for “transformation function”). Note that this function is only applied
to the estimates and the confidence intervals.
trtools::contrast(m,

a = list(layer = c("epilimnion","thermocline")),
b = list(layer = "hypolimnion"),
cnames = c("epil vs hypo","therm vs hypo"))

estimate se lower upper tvalue df pvalue
epil vs hypo 2.42 0.203 2.02 2.82 11.95 Inf 6.52e-33
therm vs hypo 1.87 0.218 1.45 2.30 8.62 Inf 6.74e-18

trtools::contrast(m,
a = list(layer = c("epilimnion","thermocline")),
b = list(layer = "hypolimnion"),
cnames = c("epil/hypo","therm/hypo"), tf = exp)

estimate lower upper
epil/hypo 11.25 7.56 16.73
therm/hypo 6.52 4.26 9.98

The following gives us inferences for the logarithm of the expected count for each layer.
trtools::contrast(m, a = list(layer = c("epilimnion","thermocline","hypolimnion")),

cnames = c("epilimnion","thermocline","hypolimnion"))

estimate se lower upper tvalue df pvalue
epilimnion 2.97 0.0506 2.871 3.070 58.7 Inf 0.00e+00
thermocline 2.42 0.0941 2.240 2.609 25.8 Inf 1.65e-146
hypolimnion 0.55 0.1961 0.166 0.934 2.8 Inf 5.04e-03

To produce the estimates of the expected counts we need to apply the exponential function.
trtools::contrast(m, a = list(layer = c("epilimnion","thermocline","hypolimnion")),

cnames = c("epilimnion","thermocline","hypolimnion"), tf = exp)

estimate lower upper
epilimnion 19.50 17.66 21.53
thermocline 11.30 9.40 13.59
hypolimnion 1.73 1.18 2.55

The emmeans package can also produce inferences for expected counts and rate ratios for categorical
explanatory variables if we specify type = "response".
library(emmeans)
emmeans(m, ~layer, type = "response")

layer rate SE df asymp.LCL asymp.UCL
thermocline 11.30 1.060 Inf 9.40 13.59
epilimnion 19.50 0.987 Inf 17.66 21.53
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hypolimnion 1.73 0.340 Inf 1.18 2.55

Confidence level used: 0.95
Intervals are back-transformed from the log scale

pairs(emmeans(m, ~layer), type = "response", adjust = "none", infer = TRUE)

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
thermocline / epilimnion 0.58 0.062 Inf 0.47 0.71 1 -5.110 <.0001
thermocline / hypolimnion 6.52 1.420 Inf 4.26 9.98 1 8.620 <.0001
epilimnion / hypolimnion 11.25 2.280 Inf 7.56 16.73 1 11.950 <.0001

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

Suppose we want the rate ratios comparing the epilimnion and thermocline with the hypolimnion layer.
contrast(emmeans(m, ~layer, type = "response"),

method = "trt.vs.ctrl", ref = 3, type = "response", infer = TRUE, adjust = "none")

contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
thermocline / hypolimnion 6.52 1.42 Inf 4.26 9.98 1 8.620 <.0001
epilimnion / hypolimnion 11.25 2.28 Inf 7.56 16.73 1 11.950 <.0001

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

Another tool that you can use if you want inferences about the expected response is the glmint function
from the trtools package.
d <- data.frame(layer = c("epilimnion","thermocline","hypolimnion"))
glmint(m, newdata = d) # syntax similar to predict and nlsint

fit low upp
1 19.50 17.66 21.53
2 11.30 9.40 13.59
3 1.73 1.18 2.55

Example: Consider again the model for the ceriodaphniastrain data. Consider first the effect of increasing
concentration by one percent.
m <- glm(count ~ concentration + strainf,

family = poisson, data = ceriodaphniastrain)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.180 0.0430 97.14 0.00e+00
concentration -1.543 0.0466 -33.11 2.06e-240
strainfa 0.275 0.0484 5.68 1.31e-08

exp(cbind(coef(m), confint(m)))

2.5 % 97.5 %
(Intercept) 65.344 60.008 71.034
concentration 0.214 0.195 0.234
strainfa 1.316 1.198 1.448

We can estimate the rate ratio for a one unit increase in concentration for each strain.
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trtools::contrast(m,
a = list(concentration = 1, strainf = c("a","b")),
b = list(concentration = 0, strainf = c("a","b")),
cnames = c("a","b"), tf = exp)

estimate lower upper
a 0.214 0.195 0.234
b 0.214 0.195 0.234

Here is how we can do that with the emmeans package. This statement will give us the expected response
for concentrations one unit apart for each strain.
emmeans(m, ~concentration|strainf,

at = list(concentration = c(1,0)), type = "response")

strainf = b:
concentration rate SE df asymp.LCL asymp.UCL

1 14.0 0.61 Inf 12.8 15.2
0 65.3 2.81 Inf 60.1 71.1

strainf = a:
concentration rate SE df asymp.LCL asymp.UCL

1 18.4 0.73 Inf 17.0 19.9
0 86.0 3.37 Inf 79.7 92.9

Confidence level used: 0.95
Intervals are back-transformed from the log scale

Now we can compare them.
pairs(emmeans(m, ~concentration|strainf, at = list(concentration = c(1,0)),

type = "response"), infer = TRUE)

strainf = b:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
concentration1 / concentration0 0.214 0.00996 Inf 0.195 0.234 1 -33.100 <.0001

strainf = a:
contrast ratio SE df asymp.LCL asymp.UCL null z.ratio p.value
concentration1 / concentration0 0.214 0.00996 Inf 0.195 0.234 1 -33.100 <.0001

Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale

We can estimate the rate ratio comparing the strains at difference concentrations.
trtools::contrast(m,

a = list(concentration = c(0, 1, 2), strainf = "a"),
b = list(concentration = c(0, 1, 2), strainf = "b"),
cnames = c("0%", "1%", "2%"), tf = exp)

estimate lower upper
0% 1.32 1.2 1.45
1% 1.32 1.2 1.45
2% 1.32 1.2 1.45

We can also use contrast to estimate the expected count for, say, strain a at different concentration values.

9



trtools::contrast(m, a = list(concentration = c(0, 1, 2), strainf = "a"),
cnames = c("0%", "1%", "2%"), tf = exp)

estimate lower upper
0% 86.03 79.67 92.88
1% 18.39 17.01 19.87
2% 3.93 3.38 4.57

We can also use the emmeans package for inferences about expected counts and rate ratios for categorical
explanatory variables.
library(emmeans)
emmeans(m, ~ strainf, type = "response",

at = list(concentration = 0))

strainf rate SE df asymp.LCL asymp.UCL
b 65.3 2.81 Inf 60.1 71.1
a 86.0 3.37 Inf 79.7 92.9

Confidence level used: 0.95
Intervals are back-transformed from the log scale

pairs(emmeans(m, ~ strainf, type = "response",
at = list(concentration = 0)), reverse = TRUE)

contrast ratio SE df null z.ratio p.value
a / b 1.32 0.0637 Inf 1 5.680 <.0001

Tests are performed on the log scale

Now suppose we add an interaction between concentration and strain.
m <- glm(count ~ concentration + strainf + concentration:strainf,

family = poisson, data = ceriodaphniastrain)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.144 0.0510 81.25 0.00e+00
concentration -1.473 0.0701 -21.01 4.80e-98
strainfa 0.337 0.0670 5.02 5.11e-07
concentration:strainfa -0.125 0.0939 -1.34 1.82e-01

trtools::contrast(m,
a = list(concentration = 1, strainf = c("a","b")),
b = list(concentration = 0, strainf = c("a","b")),
cnames = c("a","b"), tf = exp)

estimate lower upper
a 0.202 0.179 0.229
b 0.229 0.200 0.263

trtools::contrast(m,
a = list(concentration = c(0, 1, 2), strainf = "a"),
b = list(concentration = c(0, 1, 2), strainf = "b"),
cnames = c("0%", "1%", "2%"), tf = exp)

estimate lower upper
0% 1.40 1.228 1.60
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1% 1.24 1.082 1.41
2% 1.09 0.813 1.46

Now the rate ratio for concentration depends on strain and the rate ratio for strain depends on concentration
when there is an interaction term.
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