
Monday, February 24

Modeling Counts
Example: Consider the following data.
library(trtools) # for ceriodaphniastrain data
ceriodaphniastrain$strainf <- factor(ceriodaphniastrain$strain,

levels = c(1,2), labels = c("a","b"))
head(ceriodaphniastrain)

count concentration strain strainf
1 82 0 1 a
2 58 0 2 b
3 106 0 1 a
4 58 0 2 b
5 63 0 1 a
6 62 0 2 b

tail(ceriodaphniastrain)

count concentration strain strainf
65 3 1.75 1 a
66 2 1.75 2 b
67 8 1.75 1 a
68 8 1.75 2 b
69 1 1.75 1 a
70 4 1.75 2 b

p <- ggplot(ceriodaphniastrain, aes(x = concentration, y = count, color = strainf)) +
geom_point(alpha = 0.5) + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.9, 0.8)) +
labs(x = "Concentration", y = "Organisms", color = "Strain")

plot(p)
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What are the complications when the response variable is a count?

1. Nonlinear models may be necessary because E(Yi) > 0.

2. Heteroscedasticity because Var(Yi) tends to increase with E(Yi).

3. Non-normal discrete distribution.

One solution would be to use a nonlinear regression model combined with some method to account for the
heteroscedasticity, and we will revisit this approach, but for now we will consider instead a specialized model
that assumes a Poisson rather than a normal distribution of Yi.

Poisson Regression
A random variable Y has a Poisson distribution if

P (Y = y) = λye−λ

y! ,

where y is a non-negative integer (i.e., y = 0, 1, 2, . . .) and λ > 0 is the parameter of the distribution. Also
note that y! is the factorial of y, defined as y! = y × (y − 1) × (y − 2) × · · · × 2 × 1 and 0! = 1.

It can be shown that if Y has a Poisson distribution then E(Y ) = λ and Var(Y ) = λ. The parameter λ is
sometimes called a “rate” parameter.
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A regression model can be specified for a response variable with a Poisson distribution by assuming that

P (Yi = y) = λy
i e−λi

y!

where λi is a function of xi1, xi2, . . . , xik. Since λi > 0 we might use

λi = exp(β0 + β1xi1 + β2xi2 + · · · + βkxik).

This implies the nonlinear regression model

E(Yi) = exp(β0 + β1xi1 + β2xi2 + · · · + βkxik),

which can also be written as

log E(Yi) = β0 + β1xi1 + β2xi2 + · · · + βkxik.

This kind of model is sometimes called a log-linear model. And because Var(Yi) = E(Yi) the model assumes
a certain pattern of heteroscedasticity. This kind of regression model is called a Poisson regression model.

Generalized Linear Models
Poisson regression is a member of a family of models known as generalized linear models (GLM). A generalized
linear model has the form

g[E(Yi)] = β0 + β1xi1 + β1xi2 + · · · + βkxik︸ ︷︷ ︸
ηi

where g is the link function and ηi is the linear predictor or systematic component. The link function is
invertable so that we can also write

E(Yi) = g−1(β0 + β1xi1 + β1xi2 + · · · + βkxik︸ ︷︷ ︸
ηi

) = g−1(ηi).

Example: A linear regression model can be written as

E(Yi) = β0 + β1xi1 + β1xi2 + · · · + βkxik,

which implies that the link function is the “identity” function g(u) = u, and thus so is the inverse link function
g−1(v) = v.

3



Example: A Poisson regression model can be written as

log E(Yi) = β0 + β1xi1 + β1xi2 + · · · + βkxik,

so the link function is g(u) = log(u), and the inverse link funtion is the exponential function g−1(v) = exp(v),
also written as ev.

In a GLM the variance of Yi is
Var(Yi) = ϕV [E(Yi)]

where ϕ is a dispersion parameter and V is the variance function. That is, the variance of Yi is proportional
to some function of E(Yi).

Example: Linear models typically assume homoscedasticity meaning that Var(Yi) = σ2 is a constant. Here
the dispersion parameter is ϕ = σ2, and the variance function is just V [E(Yi)] = 1.

Example: In Poisson regression we have that Var(Yi) = E(Yi). Here the dispersion parameter is ϕ = 1, and
the variance function is the identity function V [E(Yi)] = E(Yi).

We can write a GLM concisely as

E(Yi) = g−1(ηi), (1)
Var(Yi) = ϕV [g−1(ηi)], (2)

where again
ηi = β0 + β1xi1 + · · · + βkxik,

to define the mean structure and a variance structure for Yi, respectively. In general, specification of a GLM
involves specifying three component parts:

1. The linear predictor ηi = β0 + β1xi1 + · · · + βkxik.
2. The link function g to relate E(Yi) to ηi as g[E(Yi)] = ηi.
3. The distribution of Yi, or the variance structure ϕV [g−1(ηi)].

The choice of distribution implies a certain variance structure when using glm. The distribution comes from a
family of distributions known as the exponential family (not to be confused with what is called an exponential
distribution).

Example: Normal linear regression is a GLM where g(u) = u, g−1(v) = v, ϕ = σ2, and V (u) = 1 so that

E(Yi) = ηi, (3)
Var(Yi) = σ2. (4)

Example: Poisson regression is a GLM where g(u) = log(u), g−1(v) = ev, ϕ = 1, and V (u) = u so that

log E(Yi) = ηi, (5)
Var(Yi) = exp(ηi). (6)

In R the function glm can be used to specify a generalized linear model.

Example: Recall the model for the whiteside data.
library(MASS)
m <- lm(Gas ~ Insul + Temp + Insul:Temp, data = whiteside)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8538 0.13596 50.409 7.997e-46
InsulAfter -2.1300 0.18009 -11.827 2.316e-16
Temp -0.3932 0.02249 -17.487 1.976e-23
InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04
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m <- glm(Gas ~ Insul + Temp + Insul:Temp, data = whiteside,
family = gaussian(link = identity))

summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8538 0.13596 50.409 7.997e-46
InsulAfter -2.1300 0.18009 -11.827 2.316e-16
Temp -0.3932 0.02249 -17.487 1.976e-23
InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04

Note that we do not explicitly state the variance structure (although we could — more on that later). Here
the variance structure is implied by the choice of distribution.

Example: Now consider the following Poisson regression model for the ceriodaphniastrain data.
m <- glm(count ~ concentration + strainf, data = ceriodaphniastrain,

family = poisson(link = log))
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.455 0.03914 113.819 0.000e+00
concentration -1.543 0.04660 -33.111 2.057e-240
strainfb -0.275 0.04837 -5.684 1.313e-08

This model can be written as
E(Yi) = exp(β0 + β1xi1 + β2xi2),

or
log E(Yi) = β0 + β1xi1 + β2xi2

where xi1 is the concentration for the i-th observation, and xi2 is an indicator variable for strain such that

xi2 =
{

1, if the strain is b,

0, otherwise,

so that the model can be written case-wise as

log E(Yi) =
{

β0 + β1ci, if the strain is a,

β0 + β2 + β1ci, if the strain is b,

or

E(Yi) =
{

exp(β0 + β1ci), if the strain is a,

exp(β0 + β2 + β1ci), if the strain is b,

if we let ci = xi1 denote the concentration for the i-th observation. Also note that because Yi is assumed to
have a Poisson distribution, Var(Yi) = E(Yi).

Example: Recall the daphnia survey.
library(trtools) # for daphniastrat
library(ggplot2)
p <- ggplot(daphniastrat, aes(x = layer, y = count)) +

geom_dotplot(binaxis = "y", binwidth = 1, stackdir = "center") +
labs(x = "Layer", y = "Number of Daphnia") + theme_minimal()

plot(p)
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A Poisson regression model for these data might be specified as follows.
m <- glm(count ~ layer, family = poisson(link = log), data = daphniastrat)
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.9704 0.05064 58.661 0.000e+00
layerthermocline -0.5456 0.10683 -5.107 3.272e-07
layerhypolimnion -2.4204 0.20255 -11.950 6.519e-33

So the model is log E(Yi) = β0 + β1xi1 + β2xi2, where Yi is the i-th count, and xi1 and xi2 are defined as

xi1 =
{

1, if the i-th observation is from the thermocline layer,
0, otherwise,

and

xi2 =
{

1, if the i-th observation is from the hypolimnion layer,
0, otherwise.

So the model can be written case-wise as

log E(Yi) =


β0, if the i-th observation is from the epilimnion layer,
β0 + β1, if the i-th observation is from the thermocline layer,
β0 + β2, if the i-th observation is from the hypolimnion layer,

or

E(Yi) =


exp(β0), if the i-th observation is from the epilimnion layer,
exp(β0 + β1), if the i-th observation is from the thermocline layer,
exp(β0 + β2), if the i-th observation is from the hypolimnion layer.

And of course we have that Var(Yi) = E(Yi).
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Visualization of a GLM
Visualization of a GLM be done in the usual way provided we use the type = response option when using
predict. The default, which is type = link, returns η̂i = β̂0 + β̂1xi1 + · · · + β̂kxik which is the estimate of
log E(Yi).
m <- glm(count ~ concentration + strainf, data = ceriodaphniastrain,

family = poisson(link = log))

d <- expand.grid(concentration = seq(0, 1.75, length = 100), strainf = c("a","b"))
d$yhat <- predict(m, newdata = d, type = "response") # note type = "response" argument

p <- ggplot(ceriodaphniastrain, aes(x = concentration, y = count, color = strainf)) +
geom_point(alpha = 0.5) + theme_minimal() + geom_line(aes(y = yhat), data = d) +
theme(legend.position = "inside", legend.position.inside = c(0.9, 0.8)) +
labs(x = "Concentration", y = "Organisms", color = "Strain")

plot(p)
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To compute confidence intervals for the expected response you can use the glmint function from the trtools
package.
d <- expand.grid(concentration = seq(0, 1.75, length = 100), strainf = c("a","b"))
d <- cbind(d, glmint(m, newdata = d))
head(d)

concentration strainf fit low upp
1 0.00000 a 86.03 79.67 92.88
2 0.01768 a 83.71 77.60 90.30
3 0.03535 a 81.46 75.58 87.79
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4 0.05303 a 79.27 73.61 85.35
5 0.07071 a 77.13 71.69 82.99
6 0.08838 a 75.06 69.82 80.68

p <- ggplot(ceriodaphniastrain, aes(x = concentration, y = count, color = strainf)) +
geom_point(alpha = 0.5) + theme_minimal() +
geom_line(aes(y = fit), data = d) +
geom_ribbon(aes(ymin = low, ymax = upp, y = NULL, fill = strainf),

color = NA, alpha = 0.25, data = d) +
theme(legend.position = "inside", legend.position.inside = c(0.9, 0.8)) +
guides(fill = "none") +
labs(x = "Concentration", y = "Organisms", color = "Strain")

plot(p)
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We might visualize the model for the daphniastrat data as follows.
m <- glm(count ~ layer, family = poisson(link = log), data = daphniastrat)

d <- data.frame(layer = unique(daphniastrat$layer))
d <- cbind(d, glmint(m, newdata = d))

p <- ggplot(daphniastrat, aes(x = layer, y = count)) +
geom_dotplot(binaxis = "y", binwidth = 1, stackdir = "center", alpha = 0.25) +
labs(x = "Layer", y = "Number of Daphnia") +
theme_minimal() + geom_pointrange(aes(y = fit, ymin = low, ymax = upp), data = d)

plot(p)
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GLMs Versus Nonlinear Regression
There is a very close relationship between a GLM and a nonlinear regression model. We can try to estimate
the model above using nlm as follows, using the estimates as starting values for convenience.
m <- nls(count ~ exp(b0 + b1 * concentration + b2 * (strainf == "b")),

data = ceriodaphniastrain, start = list(b0 = 7, b1 = -2, b2 = 0.12))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 4.4821 0.02894 154.86 2.486e-87
b1 -1.5679 0.06232 -25.16 7.441e-36
b2 -0.3267 0.04506 -7.25 5.402e-10

The estimates are not the same. But consider that the GLM assumes that

Var(Yi) = E(Yi),

so our weights should be wi = 1/E(Yi). Consider then an iteratively weighted least squares algorithm with
wi = 1/ŷi.
ceriodaphniastrain$w <- 1
for (i in 1:10) {

m <- nls(count ~ exp(b0 + b1 * concentration + b2 * (strainf == "b")),
data = ceriodaphniastrain, start = list(b0 = 7, b1 = -2, b2 = 0.12),
weights = w)

ceriodaphniastrain$w <- 1 / predict(m)
}
summary(m)$coefficients
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Estimate Std. Error t value Pr(>|t|)
b0 4.455 0.04272 104.273 7.167e-76
b1 -1.543 0.05087 -30.334 7.309e-41
b2 -0.275 0.05280 -5.208 1.988e-06

Compare that with what we obtained using glm.
m <- glm(count ~ concentration + strainf, data = ceriodaphniastrain,

family = poisson(link = log))
summary(m)$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.455 0.03914 113.819 0.000e+00
concentration -1.543 0.04660 -33.111 2.057e-240
strainfb -0.275 0.04837 -5.684 1.313e-08

The parameter estimates are the same, but the standard errors are not. Why? The GLM assumes
Var(Yi) = E(Yi) whereas the iteratively weighted least squares approach assumes Var(Yi) ∝ E(Yi).

GLMs Versus Response Variable Transformations
It is important to note that, for example, the GLM

log E(Yi) = β0 + β1xi1 + β2xi2 + · · · + βkxik.

is not equivalent to a linear model with a transformed response,

E(log Yi) = β0 + β1xi1 + β2xi2 + · · · + βkxik,

because log E(Yi) ̸= E[log Yi] (although in practice they can produce similar results).
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