
Friday, February 21

The Michaelis-Menten Model
The Michaelis-Menten model is perhaps the quintessential example of an application of nonlinear regression.
It is from biochemistry and concerns the relationship between the (expected) rate of an enzymatic reaction
to the concentration of an enzymatic substrate (i.e., the material of the reaction). As a nonlinear regression
model the Michaelis-Menten model can be written as

E(R) = αs

λ + s
,

where Y is the reaction rate and x is the substrate concentration.1

The two parameters of this model, α and λ, are interpretable in terms of the relationship between the expected
reaction rate and substrate concentration. The α parameter is the maximum expected reaction rate (i.e., the
upper asymptote as s → ∞), and λ is the value of x at which the reaction rate is half of α (i.e., a “half-life”
parameter) so smaller values of λ mean that the curve is approaching α “faster” as s increases.2 Note also
that if s = 0 then E(R) = 0 so the curve is constrained to have an “intercept” of zero, which makes sense in
the context of enzyme kinetics. The plot below shows an example of the model where α = 300 and λ = 0.5.

0

50

100

α 2

200

250

α

0 λ 1 2 3 4
s

E
(R

)

1See the Wikipedia entry on Michaelis-Menten for details if you are interested. A related model is the Beverton-Holt
population dynamics model that is frequently used in fisheries research.

2The interpretation of α can be seen by taking the limit of αs/(λ + s) as s → ∞, and the interpretation of λ can be shown by
replacing s with λ in αs/(λ + s) which gives α/2.

1

https://en.wikipedia.org/wiki/Michaelis-Menten_kinetics
https://en.wikipedia.org/wiki/Beverton-Holt_model

To estimate α and λ the typical method is to conduct a series of assays, varying substrate concentration and
recording the reaction rate at each concentration, and then using nonlinear regression to estimate α and
λ. In the following problems you will be using data in the data frame Puromycin. It is included with R so
there is no package to load. These data are from a study that observed reaction rates at several substrate
concentrations, but also for cells that were treated with puromycin (an antibiotic). Before starting you can
familiarize yourself with the data by simply typing Puromycin at the console prompt (it is not a large data
set).

1. To get started we will first ignore the experimental manipulation of treated cells with puromycin. The
R code below will estimate the linear model E(Ri) = β0 + β1si using nls and plot this model with the
data.
library(ggplot2)
m <- nls(rate ~ b0 + b1 * conc, start = c(b0 = 0, b1 = 0), data = Puromycin)

d <- expand.grid(conc = seq(0, 1.2, length = 100), state = c("treated","untreated"))
d$yhat <- predict(m, newdata = d)

p <- ggplot(Puromycin, aes(x = conc, y = rate)) +
geom_point(aes(color = state)) + geom_line(aes(y = yhat), data = d) +
labs(x = "Substrate Concentration (ppm)",

y = "Reaction Rate (counts/min/min)", color = "Cell State") +
theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.3))

plot(p)

50

100

150

200

0.00 0.25 0.50 0.75 1.00 1.25
Substrate Concentration (ppm)

R
ea

ct
io

n
R

at
e

(c
ou

nt
s/

m
in

/m
in

)

Cell State

treated

untreated

Clearly the linear model is not a good model for the data. Cut-and-paste the R code above and
modify it to replace the linear model with the Michaelis-Menten model (ignoring the experimental

2

manipulation for now). To specify starting values for α and λ, look at the plot of the data and try to
guess their approximate values. Remember that α is the asymptote and λ is the concentration at which
the (expected) reaction rate is half way between zero and the asymptote.

Solution: We might estimate the nonlinear model as follows, using the figure to guess starting values
for α and λ.
m <- nls(rate ~ alpha * conc / (lambda + conc), data = Puromycin,

start = list(alpha = 200, lambda = 0.1))
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alpha 190.80620 8.76458 21.770 6.835e-16 172.68402 210.97021
lambda 0.06039 0.01077 5.608 1.449e-05 0.03981 0.08881

We can plot the model as follows by “adding” to the code above.
d <- data.frame(conc = seq(0, 1.2, length = 100))
d$yhat <- predict(m, newdata = d)
p <- p + geom_line(aes(y = yhat), data = d, linetype = 2)
plot(p)

0

50

100

150

200

0.00 0.25 0.50 0.75 1.00 1.25
Substrate Concentration (ppm)

R
ea

ct
io

n
R

at
e

(c
ou

nt
s/

m
in

/m
in

)

Cell State

treated

untreated

2. Now consider a linear model that will assume a linear relationship between reaction rate and concentration
that is different for treated versus untreated cells (i.e., an “interaction” between substrate concentration
and cell state).
m <- lm(rate ~ state + conc + conc:state, data = Puromycin)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %

3

(Intercept) 103.49 10.53 9.832 6.914e-09 81.46 125.52
stateuntreated -17.45 15.06 -1.158 2.611e-01 -48.98 14.08
conc 110.42 20.46 5.397 3.301e-05 67.60 153.24
stateuntreated:conc -21.08 32.69 -0.645 5.266e-01 -89.50 47.33

From summary we can see that the model can be written as

E(Ri) = β0 + β1ui + β2si + β3uisi,

where si represents concentration (conc) and ui is an indicator variable for when the treatment (state)
is “untreated” so that

ui =
{

1, if the i-th observation is of untreated cells,
0, otherwise.

This model can be written case-wise as

E(Ri) =
{

β0 + β2si, if the i-th observation is of treated cells,
β0 + β1 + (β2 + β3)si, if the i-th observation is of untreated cells.

We can replicate this model using the nls function by specifying an indicator variable in the model
formula.
m <- nls(rate ~ b0 + b1*(state == "untreated") +

b2*conc + b3*(state == "untreated")*conc,
data = Puromycin, start = list(b0 = 0, b1 = 0, b2 = 0, b3 = 0))

summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 103.49 10.53 9.832 6.914e-09
b1 -17.45 15.06 -1.158 2.611e-01
b2 110.42 20.46 5.397 3.301e-05
b3 -21.08 32.69 -0.645 5.266e-01
d <- expand.grid(conc = seq(0, 1.2, length = 100), state = c("treated","untreated"))
d$yhat <- predict(m, newdata = d)

p <- ggplot(Puromycin, aes(x = conc, y = rate, color = state)) +
geom_point() + geom_line(aes(y = yhat), data = d) +
labs(x = "Substrate Concentration (ppm)",

y = "Reaction Rate (counts/min/min)", color = "Cell State") +
theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.3))

plot(p)

4

50

100

150

200

0.00 0.25 0.50 0.75 1.00 1.25
Substrate Concentration (ppm)

R
ea

ct
io

n
R

at
e

(c
ou

nt
s/

m
in

/m
in

)

Cell State

treated

untreated

Since there are only two levels of state we could also use the ifelse function to produce the same
results as using the indicator variable.
m <- nls(rate ~ ifelse(state == "treated", b0 + b2*conc, b0 + b1 + (b2 + b3)*conc),

data = Puromycin, start = list(b0 = 0, b1 = 0, b2 = 0, b3 = 0))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 103.49 10.53 9.832 6.914e-09
b1 -17.45 15.06 -1.158 2.611e-01
b2 110.42 20.46 5.397 3.301e-05
b3 -21.08 32.69 -0.645 5.266e-01

We can also use the case_when function from the dplyr package.
library(dplyr)
m <- nls(rate ~ case_when(

state == "treated" ~ b0 + b2*conc,
state == "untreated" ~ b0 + b1 + (b2 + b3)*conc,

), data = Puromycin, start = list(b0 = 0, b1 = 0, b2 = 0, b3 = 0))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 103.49 10.53 9.832 6.914e-09
b1 -17.45 15.06 -1.158 2.611e-01
b2 110.42 20.46 5.397 3.301e-05
b3 -21.08 32.69 -0.645 5.266e-01

Obviously this is a poor model for the Puromycin data since expected reaction rate does not appear to
be a linear function of substrate concentration. Instead we would like to have a model where there the
Michaelis-Menten model describes the relationship between the expected reaction rate and substrate

5

concentration, but differently for each state so that the α and λ parameters can depend on the state.
Estimate this model using the nls function, noting that there are many different ways that this model
could be parameterized. Plot the model as well with the raw data.

Solution: Here is one way we might specify such a model.
m1 <- nls(rate ~ ifelse(state == "treated", alphat * conc / (lambdat + conc),

alphau * conc / (lambdau + conc)), data = Puromycin,
start = list(alphat = 200, lambdat = 0.1, alphau = 200, lambdau = 0.1))

cbind(summary(m1)$coefficients, confint(m1))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alphat 212.68373 6.608094 32.185 4.876e-18 198.88883 227.45563
lambdat 0.06412 0.007877 8.141 1.293e-07 0.04856 0.08354
alphau 160.28001 6.896012 23.242 2.041e-15 145.85285 176.28021
lambdau 0.04771 0.008281 5.761 1.496e-05 0.03159 0.06966

The case_when function could also be used here.
m1 <- nls(rate ~ case_when(

state == "treated" ~ alphat * conc / (lambdat + conc),
state == "untreated" ~ alphau * conc / (lambdau + conc)), data = Puromycin,
start = list(alphat = 200, lambdat = 0.1, alphau = 200, lambdau = 0.1))

cbind(summary(m1)$coefficients, confint(m1))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alphat 212.68373 6.608094 32.185 4.876e-18 198.88883 227.45563
lambdat 0.06412 0.007877 8.141 1.293e-07 0.04856 0.08354
alphau 160.28001 6.896012 23.242 2.041e-15 145.85285 176.28021
lambdau 0.04771 0.008281 5.761 1.496e-05 0.03159 0.06966

This model can be written as

E(Yi) =
{

αtsi/(λt + si), if the i-th observation is of treated cells,
αusi/(λu + si), if the i-th observation is of untreated cells.

An alternative paramterization that includes a parameter for the “effect” of treating the cells is

E(Yi) =
{

(α + δα)si/(λ + δλ + si), if the i-th observation is of treated cells,
αsi/(λ + si), if the i-th observation is of untreated cells.

This is slightly different from the model shown in lecture, because here the “baseline” parameters α
and λ are for the untreated cells. We can see a relationship between the parameters in the two models:
α = αu, λ = λu, δα = αt − αu and δλ = λt − λu. This latter model can be estimated as follows.
m2 <- nls(rate ~ ifelse(state == "treated",

(alpha + deltaa) * conc / (lambda + deltal + conc),
alpha * conc / (lambda + conc)), data = Puromycin,
start = list(alpha = 200, lambda = 0.1, deltaa = 0, deltal = 0))

cbind(summary(m2)$coefficients, confint(m2))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alpha 160.28001 6.896011 23.242 2.041e-15 145.85285 176.28021
lambda 0.04771 0.008281 5.761 1.496e-05 0.03159 0.06966
deltaa 52.40373 9.551014 5.487 2.713e-05 31.33677 73.09295
deltal 0.01641 0.011429 1.436 1.672e-01 -0.01043 0.04187

There are several other ways we might parameterize the model and specify it in nls. But for plotting
purposes the parameterization does not matter.

6

d <- expand.grid(conc = seq(0, 1.2, length = 100), state = c("treated","untreated"))
d$yhat <- predict(m1, newdata = d)

p <- ggplot(Puromycin, aes(x = conc, y = rate, color = state)) +
geom_point() + geom_line(aes(y = yhat), data = d) +
labs(x = "Substrate Concentration (ppm)",

y = "Reaction Rate (counts/min/min)") +
labs(color = "Cell State") +
theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.3))

plot(p)

0

50

100

150

200

0.00 0.25 0.50 0.75 1.00 1.25
Substrate Concentration (ppm)

R
ea

ct
io

n
R

at
e

(c
ou

nt
s/

m
in

/m
in

)

Cell State

treated

untreated

3. There are several potentially useful inferences we might make here. One is the values of the two
parameters for the Michaelis-Menten model for each state. Another is the difference in the parameters
between states. Depending on how the model was parameterized in the previous question, some of these
could be found simply by using summary and confint, while others might require using lincon unless
the model is reparameterized. Produce estimates, standard errors, and confidence intervals for the six
quantities described above.

Solution: First consider inferences for the two parameters of the Michaelis-Menten model for each
treatment condition. These are the parameters of the first parameterization used above.
cbind(summary(m1)$coefficients, confint(m1))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alphat 212.68373 6.608094 32.185 4.876e-18 198.88883 227.45563
lambdat 0.06412 0.007877 8.141 1.293e-07 0.04856 0.08354
alphau 160.28001 6.896012 23.242 2.041e-15 145.85285 176.28021

7

lambdau 0.04771 0.008281 5.761 1.496e-05 0.03159 0.06966

If we were using the second parameterization, we could obtain estimates of the parameters from the
untreated cells from summary and confint, but would have to use something like lincon to to estimate
a function of the model parameters. Recall the relationships between the parameters in the two models:
α = αu, λ = λu, δα = αt − αu and δλ = λt − λu. Thus αt = α + δα and λt = λ + δλ.
library(trtools)
cbind(summary(m2)$coefficients, confint(m2))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alpha 160.28001 6.896011 23.242 2.041e-15 145.85285 176.28021
lambda 0.04771 0.008281 5.761 1.496e-05 0.03159 0.06966
deltaa 52.40373 9.551014 5.487 2.713e-05 31.33677 73.09295
deltal 0.01641 0.011429 1.436 1.672e-01 -0.01043 0.04187
lincon(m2, a = c(1, 0, 1, 0)) # lambdat

estimate se lower upper tvalue df pvalue
(1,0,1,0),0 212.7 6.608 198.9 226.5 32.19 19 4.876e-18
lincon(m2, a = c(0, 1, 0, 1)) # lambdat

estimate se lower upper tvalue df pvalue
(0,1,0,1),0 0.06412 0.007877 0.04763 0.08061 8.141 19 1.293e-07

Now if we want to estimate the difference in the parameters of the Michaelis-Menten model between
the treated and untreated states, we could get that from the second parameterization because those
differences are δα and δλ.
cbind(summary(m2)$coefficients, confint(m2))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alpha 160.28001 6.896011 23.242 2.041e-15 145.85285 176.28021
lambda 0.04771 0.008281 5.761 1.496e-05 0.03159 0.06966
deltaa 52.40373 9.551014 5.487 2.713e-05 31.33677 73.09295
deltal 0.01641 0.011429 1.436 1.672e-01 -0.01043 0.04187

But if we were using the first parameterization we would again need to use something like lincon since
δα = αt − αu and δλ = λt − λu.
lincon(m1, a = c(1,0,-1,0)) # delta_alpha

estimate se lower upper tvalue df pvalue
(1,0,-1,0),0 52.4 9.551 32.41 72.39 5.487 19 2.713e-05
lincon(m1, a = c(0,1,0,-1)) # delta_lambda

estimate se lower upper tvalue df pvalue
(0,1,0,-1),0 0.01641 0.01143 -0.007508 0.04033 1.436 19 0.1672

Note that when estimating the same quantity we obtain the same estimates and standard errors from
either parameterization from summary and lincon. The confidence intervals, however, are slightly
different because confint and lincon use different methods of obtaining approximate confidence
intervals.

Heteroscedasticity in the Daphnia Data
The data frame daphniastrat from the trtools package features data from a survey of water fleas where the
number of water fleas were counted in one liter samples of water taken from three different layers of a lake.

8

library(trtools) # for daphniastrat
library(ggplot2)
p <- ggplot(daphniastrat, aes(x = layer, y = count)) +

geom_dotplot(binaxis = "y", binwidth = 1, stackdir = "center") +
labs(x = "Layer", y = "Number of Daphnia") + theme_minimal()

plot(p)

0

10

20

30

epilimnion thermocline hypolimnion
Layer

N
um

be
r

of
 D

ap
hn

ia

We used the following linear model for these data.
m <- lm(count ~ layer, data = daphniastrat)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.50 0.7271 26.820 4.727e-28
layerthermocline -8.20 1.2593 -6.512 7.293e-08
layerhypolimnion -17.77 1.1106 -15.997 1.784e-19

But heteroscedasticity is evident in the plot of the raw data above and also in a plot of the studentized
residuals.
daphniastrat$yhat <- predict(m)
daphniastrat$rest <- rstudent(m)
p <- ggplot(daphniastrat, aes(x = yhat, y = rest, color = layer)) +

geom_count() + theme_minimal() +
labs(x = "Predicted Value", y = "Studentized Residual", color = "Layer")

plot(p)

9

−2

0

2

4

5 10 15 20
Predicted Value

S
tu

de
nt

iz
ed

 R
es

id
ua

l

Layer

epilimnion

thermocline

hypolimnion

n

1

2

3

4

5

Note that geom_count is a variant of geom_point that makes the point size proportional to the number of
points at a particular position, which is useful here.

Heteroscedasticty is quite common when the response variable is a count. Typically the variance of the
counts increases with the expected count. Here we will consider a couple of ways of dealing with this
heteroscedasticty.

1. We might assume that the variance varies by layer with the expected count, so that

Var(Yi) =


σ2

e , if the i-th observation is from the epilimnion layer,
σ2

t , if the i-th observation is from the thermocline layer,
σ2

h, if the i-th observation is from the hypolimnion layer.

If so, then our weights should be specified such that

wi ∝


1/σ2

e , if the i-th observation is from the epilimnion layer,
1/σ2

t , if the i-th observation is from the thermocline layer,
1/σ2

h, if the i-th observation is from the hypolimnion layer.

We do not know σ2
e , σ2

t , and σ2
h, but they could be estimated using the sample variances s2

e, s2
t , and

s2
h, respectively, which we can easily compute since we have multiple observations from each layer.

Estimate the model using weighted least squares with weights computed as described above. The
sample variances can be computed and used to add weights to the data frame using functions from the
dplyr package as demonstrated with the CancerSurvival data in lecture.

Solution: First we compute the weights using functions from the dplyr package.
library(dplyr)
daphniastrat <- daphniastrat %>% group_by(layer) %>% mutate(w = 1 / var(count))

10

lecture-02-14-2025.html

Then we estimate the model using weighted least squares.
m <- lm(count ~ layer, data = daphniastrat, weights = w)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.50 0.7997 24.385 2.035e-26
layerthermocline -8.20 1.5190 -5.398 2.896e-06
layerhypolimnion -17.77 0.9392 -18.918 3.617e-22

2. Assuming again that the variance of the counts vary by layer so that

Var(Yi) =


σ2

e , if the i-th observation is from the epilimnion layer,
σ2

t , if the i-th observation is from the thermocline layer,
σ2

h, if the i-th observation is from the hypolimnion layer,

another approach would be to use a parametric model that estimates the usual parameters of the
regression model (i.e., β0, β1, and β3) and the three variances above simultaneously. Do this using the
gls function from the nlme package as demonstrated in lecture.

Solution: Here is how we would estimate this model.
library(nlme) # for gls function
m <- gls(count ~ layer, data = daphniastrat,

weights = varIdent(form = ~ 1 | layer), method = "ML")
summary(m)

Generalized least squares fit by maximum likelihood
Model: count ~ layer
Data: daphniastrat

AIC BIC logLik
235.1 245.9 -111.5

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | layer
Parameter estimates:
epilimnion thermocline hypolimnion

1.0000 1.1115 0.5286

Coefficients:
Value Std.Error t-value p-value

(Intercept) 19.50 0.8068 24.170 0
layerthermocline -8.20 1.5030 -5.456 0
layerhypolimnion -17.77 0.9452 -18.796 0

Correlation:
(Intr) lyrthr

layerthermocline -0.537
layerhypolimnion -0.854 0.458

Standardized residuals:
Min Q1 Med Q3 Max

-1.6261 -0.5937 -0.1434 0.4303 3.0123

Residual standard error: 3.486
Degrees of freedom: 45 total; 42 residual

11

lecture-02-19-2025.html

The model above was estimated using maximum likelihood (ML). But another method is to use what is
called restricted maximum likelihood (REML) which is the default method. It is interesting to note that
for this model, this REML effectively equivalent to the approach used in the previous problem.
library(nlme) # for gls function
m <- gls(count ~ layer, data = daphniastrat,

weights = varIdent(form = ~ 1 | layer), method = "ML")
summary(m)

Generalized least squares fit by maximum likelihood
Model: count ~ layer
Data: daphniastrat

AIC BIC logLik
235.1 245.9 -111.5

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | layer
Parameter estimates:
epilimnion thermocline hypolimnion

1.0000 1.1115 0.5286

Coefficients:
Value Std.Error t-value p-value

(Intercept) 19.50 0.8068 24.170 0
layerthermocline -8.20 1.5030 -5.456 0
layerhypolimnion -17.77 0.9452 -18.796 0

Correlation:
(Intr) lyrthr

layerthermocline -0.537
layerhypolimnion -0.854 0.458

Standardized residuals:
Min Q1 Med Q3 Max

-1.6261 -0.5937 -0.1434 0.4303 3.0123

Residual standard error: 3.486
Degrees of freedom: 45 total; 42 residual

We will discuss maximum likelihood and perhaps restricted maximum likelihood later in the course.

3. With counts it is often assumed that the variance is proportional to the expected response — i.e.,
Var(Yi) ∝ E(Yi). Assuming that is true here, estimate the model using iteratively weighted least squares
as was demonstrated in lecture.

Solution: We can program the iteratively weighted least squares algorithm as follows.
daphniastrat$w <- 1
for (i in 1:5) {

m <- lm(count ~ layer, data = daphniastrat, weights = w)
daphniastrat$w <- 1 / predict(m)

}
summary(m)

Call:

12

lecture-02-19-2025.html

lm(formula = count ~ layer, data = daphniastrat, weights = w)

Weighted Residuals:
Min 1Q Median 3Q Max

-1.874 -0.684 -0.113 0.340 4.000

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.50 1.13 17.24 < 2e-16 ***
layerthermocline -8.20 1.66 -4.93 1.3e-05 ***
layerhypolimnion -17.77 1.20 -14.85 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.15 on 42 degrees of freedom
Multiple R-squared: 0.86, Adjusted R-squared: 0.853
F-statistic: 128 on 2 and 42 DF, p-value: <2e-16

For this particular model the algorithm only needs to go through one iteration to compute the weights.
This is because the predicted values do not depend on the weights in this particular model.

13

	The Michaelis-Menten Model
	Heteroscedasticity in the Daphnia Data

