
Wednesday, February 19

Iteratively Weighted Least Squares
Iteratively weighted least squares can be used when we assume that the variance is proportional to a function
of the mean so that

Var(Yi) ∝ h[E(Yi)],

where h is some specified function, implying that our weights should be

wi = 1
h[E(Yi)]

.

Because E(Yi) is unknown we can use the estimate ŷi to obtain weights

wi = 1
h(ŷi)

.

Because ŷi depends on the weights used in the weighted least squares algorithm, and wi depends on ŷi, we
can use the following algorithm known as iteratively weighted least squares.

1. Estimate the model using ordinary least squares where all wi = 1.

2. Compute weights as wi = 1/h(ŷi).

3. Estimate the model using weighted least squares with the weights wi = 1/h(ŷi).

The second and third steps can be repeated until the estimates and thus the weights stop changing. Typically
only a few iterations are necessary.

Example: Consider again following data from a study on the effects of fuel reduction on biomass.
library(trtools) # for biomass data

m.ols <- lm(suitable ~ -1 + treatment:total, data = biomass)
summary(m.ols)$coefficients

Estimate Std. Error t value Pr(>|t|)
treatmentn:total 0.1056 0.04183 2.524 1.31e-02
treatmenty:total 0.1319 0.01121 11.773 7.61e-21
d <- expand.grid(treatment = c("n","y"), total = seq(0, 2767, length = 10))
d$yhat <- predict(m.ols, newdata = d)

p <- ggplot(biomass, aes(x = total, y = suitable, color = treatment)) +
geom_point() + geom_line(aes(y = yhat), data = d) + theme_minimal() +
labs(x = "Total Biomass (kg/ha)", y = "Suitable Biomass (kg/ha)",

color = "Treatment")
plot(p)

1

0

200

400

600

0 1000 2000
Total Biomass (kg/ha)

S
ui

ta
bl

e
B

io
m

as
s

(k
g/

ha
)

Treatment

n

y

biomass$yhat <- predict(m.ols)
biomass$rest <- rstudent(m.ols)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
geom_point() + theme_minimal() +
labs(x = "Predicted Value", y = "Studentized Residual",

color = "Treatment")
plot(p)

2

−2

0

2

4

0 100 200 300
Predicted Value

S
tu

de
nt

iz
ed

 R
es

id
ua

l

Treatment

n

y

Assume that Var(Yi) ∝ E(Yi), which means the weights should be wi = 1/E(Yi). We can program the
iteratively weighted least squares algorithm as follows.
biomass$w <- 1 # initial weights are all equal to one
for (i in 1:5) {

m.wls <- lm(suitable ~ -1 + treatment:total, weights = w, data = biomass)
print(coef(m.wls)) # optional
biomass$w <- 1 / predict(m.wls)

}

treatmentn:total treatmenty:total
0.1056 0.1319

treatmentn:total treatmenty:total
0.1155 0.1578

treatmentn:total treatmenty:total
0.1155 0.1578

treatmentn:total treatmenty:total
0.1155 0.1578

treatmentn:total treatmenty:total
0.1155 0.1578

Now let’s take a look at the residuals.
biomass$yhat <- predict(m.wls)
biomass$rest <- rstudent(m.wls)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
geom_point() + theme_minimal() +
labs(x = "Predicted Value", y = "Studentized Residual",

3

color = "Treatment")
plot(p)

−2

0

2

0 100 200 300 400
Predicted Value

S
tu

de
nt

iz
ed

 R
es

id
ua

l

Treatment

n

y

That may not be quite enough. Suppose we assume that Var(Yi) ∝ E(Yi)p where p = 2.
biomass$w <- 1 # initial weights are all equal to one
for (i in 1:5) {

m.wls <- lm(suitable ~ -1 + treatment:total, weights = w, data = biomass)
biomass$w <- 1 / predict(m.wls)ˆ2

}

Now let’s take a look at the residuals.
biomass$yhat <- predict(m.wls)
biomass$rest <- rstudent(m.wls)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
geom_point() + theme_minimal() +
labs(x = "Predicted Value", y = "Studentized Residual",

color = "Treatment")
plot(p)

4

−1

0

1

2

3

0 100 200 300 400 500
Predicted Value

S
tu

de
nt

iz
ed

 R
es

id
ua

l

Treatment

n

y

Better. Maybe too much? We could try p = 1.5 or something like that. The residuals do get a little strange
for higher predicted values, but we’ll leave it here.

The model is E(Si) = β1niti + β2yiti, where ni and yi are indicator variables for if the i-th plot was treated
or not by fuel reduction. We can also write the model as

E(Si) =
{

β1ti, if the i-th plot was not treated by fuel reduction,
β2ti, if the i-th plot was treated by fuel reduction.

We can use β2 − β1 for inferences about the treatment effect.
lincon(m.ols, a = c(-1,1))

estimate se lower upper tvalue df pvalue
(-1,1),0 0.02634 0.0433 -0.05953 0.1122 0.6082 104 0.5444
lincon(m.wls, a = c(-1,1))

estimate se lower upper tvalue df pvalue
(-1,1),0 0.06386 0.02359 0.01708 0.1106 2.707 104 0.007937

The contrast function from the trtools package can also do this. It can make inferences for a difference of
differences.
trtools::contrast(m.wls,

a = list(treatment = "y", total = 1),
b = list(treatment = "y", total = 0),
u = list(treatment = "n", total = 1),
v = list(treatment = "n", total = 0))

estimate se lower upper tvalue df pvalue

5

0.06386 0.02359 0.01708 0.1106 2.707 104 0.007937

This estimates E(Ya) − E(Yb) − [E(Yu) − E(Yv)]. This can also be done using the emtrends function from
the emmeans package.
library(emmeans)
emtrends(m.wls, ~treatment, var = "total") # estimate slopes

treatment total.trend SE df lower.CL upper.CL
n 0.125 0.0183 104 0.0888 0.161
y 0.189 0.0149 104 0.1593 0.219

Confidence level used: 0.95
pairs(emtrends(m.wls, ~ treatment, var = "total")) # estimate difference between slopes

contrast estimate SE df t.ratio p.value
n - y -0.0639 0.0236 104 -2.707 0.0079

Yet another approach to compare the slopes is to change the parameterization. Consider the following model.
m.wls <- lm(suitable ~ -1 + total + total:treatment, weights = w, data = biomass)
summary(m.wls)$coefficients

Estimate Std. Error t value Pr(>|t|)
total 0.18892 0.01493 12.656 8.836e-23
total:treatmentn -0.06386 0.02359 -2.707 7.937e-03

From summary we can see that this model can be written as

E(Si) = β1ti + β2tini,

where ni is an indicator variable where ni = 1 if the treatment was not appiled to the i-th plot, add ni = 0
otherwise, so we can also write the model as

E(Si) =
{

(β1 + β2)ti, if the i-th plot was not treated by fuel reduction,

β1ti, if the i-th plot was treated by fuel reduction.

Note that the meaning of β1 and β2 have changed here. The slopes of the lines with and without treatment
are β1 and β1 + β2, respectively, and the difference between the slopes is β1 − (β1 + β2) = −β2. So inferences
for β2 are for the difference in the slopes (after we reverse the sign). Although not necessary, we can change
the reference category to avoid having to reverse the sign.
biomass$treatment <- relevel(biomass$treatment, ref = "y")
m.wls <- lm(suitable ~ -1 + total + total:treatment, weights = w, data = biomass)
summary(m.wls)$coefficients

Estimate Std. Error t value Pr(>|t|)
total 0.12506 0.01827 6.847 5.428e-10
total:treatmenty 0.06386 0.02359 2.707 7.937e-03

Now the model can be written as
E(Si) = β1ti + β2tini,

or

E(Si) =
{

β1ti, if the i-th plot was not treated by fuel reduction,

(β1 + β2)ti, if the i-th plot was treated by fuel reduction.

Note: For some reason the reference category (y) is getting an indicator variable here, where normally it
does not. I am not sure if this is a bug or intentional, but it appears to be due to the somewhat unusual
parameterization I am using.

6

Parametric Models for Heteroscedasticity
Example: Consider the following data where variability appears to vary by treatment.
library(trtools) # for pulse data
p <- ggplot(pulse, aes(x = pulse1, y = pulse2, color = treatment)) +

geom_point() + theme_minimal() +
labs(x = "Pulse Before", y = "Pulse After", color = "Treatment") +
theme(legend.position = c(0.85,0.2))

plot(p)

50

75

100

125

150

175

50 75 100 125
Pulse Before

P
ul

se
 A

fte
r

Treatment

ran

sat

There is one case with missing values on pulse1 and pulse2.
subset(pulse, !complete.cases(pulse)) # show observations with missing data

height weight age gender smokes alcohol exercise treatment pulse1 pulse2 year
76 173 64 20 female no yes moderate sat NA NA 97

This will cause problems so we are going to remove it.
pulse <- subset(pulse, complete.cases(pulse)) # overwrite pulse with only complete cases

Let’s consider a simple linear model.
m <- lm(pulse2 ~ treatment + pulse1 + treatment:pulse1, data = pulse)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.41757 10.4467 5.68767 1.171e-07
treatmentsat -51.25896 15.7451 -3.25554 1.524e-03
pulse1 0.89363 0.1357 6.58544 1.841e-09

7

treatmentsat:pulse1 -0.01437 0.2049 -0.07011 9.442e-01
pulse$yhat <- predict(m)
pulse$rest <- rstudent(m)
p <- ggplot(pulse, aes(x = yhat, y = rest, color = treatment)) +

geom_point() + theme_minimal() +
labs(x = "Predicted Value", y = "Studentized Residual",

color = "Treatment") +
theme(legend.position = c(0.8,0.2))

plot(p)

−2

0

2

50 100 150
Predicted Value

S
tu

de
nt

iz
ed

 R
es

id
ua

l

Treatment

ran

sat

Consider that the model assumed by lm is

E(Yi) = β0 + β1ti + β2xi + β3tixi, (1)
Var(Yi) = σ2, (2)

where Yi is the second pulse measurement, ti is an indicator variable for the treatment (i.e., ti = 1 if the
i-th observation was from the sitting treatment condition, and ti = 0 otherwise), and xi is the first pulse
measurement. Maybe it would make sense to have something like

Var(Yi) =
{

σ2
s , if the i-th observation is from the sitting treatment,

σ2
r , if the i-th observation is from the running treatment.

We can estimate such a model using the gls function from the nlme package.
library(nlme) # should come with R
m <- gls(pulse2 ~ treatment + pulse1 + treatment:pulse1, data = pulse,

method = "ML", weights = varIdent(form = ~ 1|treatment))
summary(m)

8

Generalized least squares fit by maximum likelihood
Model: pulse2 ~ treatment + pulse1 + treatment:pulse1
Data: pulse

AIC BIC logLik
763.1 779.3 -375.6

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | treatment
Parameter estimates:
sat ran

1.000 5.723

Coefficients:
Value Std.Error t-value p-value

(Intercept) 59.42 15.755 3.771 0.0003
treatmentsat -51.26 16.058 -3.192 0.0019
pulse1 0.89 0.205 4.367 0.0000
treatmentsat:pulse1 -0.01 0.209 -0.069 0.9452

Correlation:
(Intr) trtmnt pulse1

treatmentsat -0.981
pulse1 -0.980 0.962
treatmentsat:pulse1 0.962 -0.980 -0.981

Standardized residuals:
Min Q1 Med Q3 Max

-2.0920 -0.7688 0.1026 0.5886 2.1968

Residual standard error: 3.634
Degrees of freedom: 109 total; 105 residual

Note the different syntax for extracting standardized residuals.
pulse$yhat <- predict(m)
pulse$resz <- residuals(m, type = "p") # note different syntax
p <- ggplot(pulse, aes(x = yhat, y = resz, color = treatment)) +

geom_point() + theme_minimal() +
labs(x = "Predicted Value", y = "Standardized Residual",

color = "Treatment")
plot(p)

9

−2

−1

0

1

2

50 100 150
Predicted Value

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Treatment

ran

sat

Here is an example with the CancerSurvival data.
library(Stat2Data)
data(CancerSurvival)
m <- gls(Survival ~ Organ, data = CancerSurvival,

method = "ML", weights = varIdent(form = ~ 1|Organ))
summary(m)

Generalized least squares fit by maximum likelihood
Model: Survival ~ Organ
Data: CancerSurvival

AIC BIC logLik
976.8 998.4 -478.4

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Organ
Parameter estimates:
Stomach Bronchus Colon Ovary Breast
1.0000 0.6119 1.2455 3.0141 3.5504

Coefficients:
Value Std.Error t-value p-value

(Intercept) 1395.9 371.0 3.763 0.0004
OrganBronchus -1184.3 374.5 -3.162 0.0025
OrganColon -938.5 385.5 -2.435 0.0179
OrganOvary -511.6 565.2 -0.905 0.3691
OrganStomach -1109.9 383.2 -2.896 0.0053

10

Correlation:
(Intr) OrgnBr OrgnCl OrgnOv

OrganBronchus -0.991
OrganColon -0.962 0.953
OrganOvary -0.656 0.650 0.632
OrganStomach -0.968 0.959 0.932 0.635

Standardized residuals:
Min Q1 Med Q3 Max

-1.1613 -0.6824 -0.2878 0.1748 3.3435

Residual standard error: 332.7
Degrees of freedom: 64 total; 59 residual
CancerSurvival$yhat <- predict(m)
CancerSurvival$resz <- residuals(m, type = "p")
p <- ggplot(CancerSurvival, aes(x = yhat, y = resz, color = Organ)) +

geom_point() + theme_minimal() +
labs(x = "Predicted Value", y = "Standardized Residual", color = "Organ")

plot(p)

−1

0

1

2

3

500 1000
Predicted Value

S
ta

nd
ar

di
ze

d
R

es
id

ua
l

Organ

Breast

Bronchus

Colon

Ovary

Stomach

Comments about parametric models for heteroscedasticity.

Advantages: Potentially very effective if we can specify an accurate model for the variance.

Disadvantages: If we do not specify an accurate model for the variance, it may bias estimation of parameters
concerning the expected response.

11

Heteroscedastic Consistent Standard Errors
The idea is to estimate the model parameters using ordinary least squares, but estimate the standard errors
in such a way that we do not assume homoscedasticity This is sometimes called heteroscedastic consistent
standard errors, robust standard errors, or sandwich estimators.

Example: Consider again the cancer survival data.
m <- lm(Survival ~ Organ, data = CancerSurvival)

The sandwich package provides resources for using heteroscedastic-consistent standard errors.
library(sandwich)

Technically, what is being estimated is the covariance matrix of the parameter estimators.1 The usual way to
interface with the functions in the sandwich package is through other functions.
summary(m)$coefficients # bad standard error estimates

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1395.9 201.9 6.915 3.770e-09
OrganBronchus -1184.3 259.1 -4.571 2.530e-05
OrganColon -938.5 259.1 -3.622 6.083e-04
OrganOvary -511.6 339.8 -1.506 1.375e-01
OrganStomach -1109.9 274.3 -4.046 1.533e-04
confint(m) # bad confidence intervals due to bad standard error estimates

2.5 % 97.5 %
(Intercept) 992 1799.9
OrganBronchus -1703 -665.9
OrganColon -1457 -420.1

1What the sandwich package provides is ways to estimate the covariance matrix of the estimators of the model parameters,
which can be used to obtain standard errors as shown below.
library(sandwich) # for vcovHC used below
vcov(m) # bad estimate if there is heteroscedasticity

(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach
(Intercept) 40752 -40752 -40752 -40752 -40752
OrganBronchus -40752 67121 40752 40752 40752
OrganColon -40752 40752 67121 40752 40752
OrganOvary -40752 40752 40752 115464 40752
OrganStomach -40752 40752 40752 40752 75235

vcovHC(m) # better estimate if there is heteroscedasticity

(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach
(Intercept) 153504 -153504 -153504 -153504 -153504
OrganBronchus -153504 156256 153504 153504 153504
OrganColon -153504 153504 164908 153504 153504
OrganOvary -153504 153504 153504 394879 153504
OrganStomach -153504 153504 153504 153504 163498

The square root of the diagonal elements are the standard errors.
sqrt(diag(vcov(m))) # bad estimates of the standard errors

(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach
201.9 259.1 259.1 339.8 274.3

sqrt(diag(vcovHC(m))) # better estimates of the standard errors

(Intercept) OrganBronchus OrganColon OrganOvary OrganStomach
391.8 395.3 406.1 628.4 404.3

But we do not typically use these functions directly. Instead they are used by other functions that compute and use standard
errors.

12

OrganOvary -1192 168.4
OrganStomach -1659 -561.1
library(lmtest) # for coeftest and coefci used below
coeftest(m, vcov = vcovHC) # better standard error estimates

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1396 392 3.56 0.00073 ***
OrganBronchus -1184 395 -3.00 0.00400 **
OrganColon -938 406 -2.31 0.02434 *
OrganOvary -512 628 -0.81 0.41886
OrganStomach -1110 404 -2.74 0.00801 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coefci(m, vcov = vcovHC) # better confidence intervals

2.5 % 97.5 %
(Intercept) 611.9 2179.9
OrganBronchus -1975.3 -393.3
OrganColon -1751.1 -125.9
OrganOvary -1769.0 745.8
OrganStomach -1919.0 -300.8

Both lincon and contrast will accept a fcov argument to provide a function to estimate standard errors.
lincon(m, fcov = vcovHC)

estimate se lower upper tvalue df pvalue
(Intercept) 1395.9 391.8 611.9 2179.9 3.5628 59 0.0007337
OrganBronchus -1184.3 395.3 -1975.3 -393.3 -2.9961 59 0.0039950
OrganColon -938.5 406.1 -1751.1 -125.9 -2.3111 59 0.0243421
OrganOvary -511.6 628.4 -1769.0 745.8 -0.8141 59 0.4188611
OrganStomach -1109.9 404.3 -1919.0 -300.8 -2.7449 59 0.0080080
organs <- sort(unique(CancerSurvival$Organ)) # sorted organ names
trtools::contrast(m, a = list(Organ = organs),

cnames = organs, fcov = vcovHC)

estimate se lower upper tvalue df pvalue
Breast 1395.9 391.80 611.93 2179.9 3.563 59 7.337e-04
Bronchus 211.6 52.46 106.61 316.6 4.033 59 1.604e-04
Colon 457.4 106.79 243.72 671.1 4.283 59 6.884e-05
Ovary 884.3 491.30 -98.75 1867.4 1.800 59 7.698e-02
Stomach 286.0 99.97 85.96 486.0 2.861 59 5.836e-03
lincon(m, a = c(1,0,0,0,1), fcov = vcovHC)

estimate se lower upper tvalue df pvalue
(1,0,0,0,1),0 286 99.97 85.96 486 2.861 59 0.005836

You can use a similar approach with the emmeans function from the emmeans package, but there the
argument is vcov.
library(emmeans)
emmeans(m, ~Organ, vcov = vcovHC)

13

Organ emmean SE df lower.CL upper.CL
Breast 1396 392.0 59 611.9 2180
Bronchus 212 52.5 59 106.6 317
Colon 457 107.0 59 243.7 671
Ovary 884 491.0 59 -98.8 1867
Stomach 286 100.0 59 86.0 486

Confidence level used: 0.95
pairs(emmeans(m, ~Organ, vcov = vcovHC), adjust = "none", infer = TRUE)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
Breast - Bronchus 1184.3 395 59 393 1975.3 2.996 0.0040
Breast - Colon 938.5 406 59 126 1751.1 2.311 0.0243
Breast - Ovary 511.6 628 59 -746 1769.0 0.814 0.4189
Breast - Stomach 1109.9 404 59 301 1919.0 2.745 0.0080
Bronchus - Colon -245.8 119 59 -484 -7.7 -2.066 0.0432
Bronchus - Ovary -672.7 494 59 -1661 315.9 -1.362 0.1785
Bronchus - Stomach -74.4 113 59 -300 151.5 -0.659 0.5124
Colon - Ovary -426.9 503 59 -1433 579.1 -0.849 0.3992
Colon - Stomach 171.4 146 59 -121 464.1 1.172 0.2460
Ovary - Stomach 598.3 501 59 -405 1601.6 1.193 0.2375

Confidence level used: 0.95

Use the function waldtest in place of anova when using heteroscedastic-consistent standard errors.
m.full <- lm(Survival ~ Organ, data = CancerSurvival)
m.null <- lm(Survival ~ 1, data = CancerSurvival)
waldtest(m.null, m.full, vcov = vcovHC)

Wald test

Model 1: Survival ~ 1
Model 2: Survival ~ Organ

Res.Df Df F Pr(>F)
1 63
2 59 4 3.52 0.012 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comments about heteroscedastic-consistent standard errors:

Advantages: Does not require us to specify a variance structure/function. We let the data inform the
estimator.

Disadvantages: Highly dependent on the data to help produce better estimates of the standard errors, and
tends to work well only if n is relatively large.

Note: There are a variety of variations of the “sandwich” estimator. Different estimators can be specified
through the type argument to vcovHC so instead of writing vcov = vcovHC or fcov = vcovHC we write
vcov = function(m) vcovHC(m, type = "HC0") or vcov = function(m) vcovHC(m, type = "HC0") if
we wanted to use that particular type of estimator (sometimes called “White’s estimator”).

14

	Iteratively Weighted Least Squares
	Parametric Models for Heteroscedasticity
	Heteroscedastic Consistent Standard Errors

