
Wednesday, February 12

Assumption 3: Independence of Errors/Observations
In the regression model

Yi = f(xi1, xi2, . . . , xik) + ϵi,

it is assumed that ϵ1, ϵ2, . . . , ϵn are mutually independent. Equivalently, it is assumed that Y1, Y2, . . . , Yn are
conditionally independent given xi1, xi2, . . . , xik. That is, the distribution of any one ϵi (or Yi) should not
depend on the values of the other ϵi′ (or Yi′) (i′ ̸= i).

A weaker condition that Cov(ϵi, ϵi′) = 0 for all i ≠ i′ is sufficient. The covariance between ϵi and ϵi′ is defined
as

Cov(ϵi, ϵi′) = Corr(ϵi, ϵi′)
√

Var(ϵi)Var(ϵi′).,

Note that this implies the same condition for Yi and Yi′ .

Consequences: Severe violations of independence can result in two problems.

1. Biased standard errors, incorrect p-values, and incorrect confidence/prediction intervals.

2. Inefficient estimation of model parameters (and functions thereof).

Detection: A common reason for a lack of independence is that multiple observations are influenced by
one or more common random but unobserved effects, or in some cases one observation influences another
observation directly. Typically observations that are “closer” in some sense — time, space, or observational
units — are not independent. Plotting with this in mind can sometimes reveal a lack of independence.

Example: Serial dependence — observations close in time.
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Example: Nested observations — observations within a common experimental unit.
source("http://webpages.uidaho.edu/~trjohns/grooming.txt")
head(grooming)

id day frequency collar
1 m1 -6 0.66 before
2 m2 -6 0.63 before
3 m3 -6 2.16 before
4 m4 -6 1.54 before
5 m5 -6 0.56 before
6 m6 -6 2.04 before

tail(grooming)

id day frequency collar
112 m4 7 5.07 after
113 m5 7 2.20 after
114 m6 7 2.52 after
115 m7 7 1.39 after
116 m8 7 3.84 after
117 m9 7 1.90 after

p <- ggplot(grooming, aes(x = day, y = frequency, color = id)) +
geom_point() + facet_grid(~ collar, scales = "free_x") +
theme_minimal() +
labs(x = "Relative Day", y = "Grooming Frequency",

color = "Rabbit")
plot(p)
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m <- lm(log(frequency) ~ day + collar + day:collar, data = grooming)
grooming$yhat <- predict(m)
grooming$rest <- rstudent(m)
p <- ggplot(grooming, aes(x = yhat, y = rest)) +

geom_point() +
geom_segment(aes(x = yhat, xend = yhat, y = rest, yend = 0)) +
facet_wrap(~ id) + theme_minimal() +
labs(x = "Predicted Value", y = "Studentized Residual")

plot(p)
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Solutions: There are several possible solutions.

1. Generalized least squares.

2. Robust standard error estimators.

3. Models that allow for dependence of observations.

We will discuss each of these in later lectures.

Assumption 4: Normality
Description: It is assumed that the distribution of each ϵi is normal, which implies that the distribution of
each Yi is also normal (conditional on xi1, xi2, . . . , xik).

Consequences: Confidence/prediction intervals and p-values may not be accurate if the distribution of
ϵi (or Yi) is very non-normal, but only if n is very small relative to the number of parameters (p). This is
because under fairly general circumstances as n → ∞ the sampling distribution of the model parameters
(and functions thereof) “approach” a normal distribution (i.e., “asymptotically normal”) regardless of the
distribution of the error/response. With the exception of prediction intervals, we only require that sampling
distributions are (approximately) normal.
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Consider the model Yi = β0 + β1xi + ϵi where the distribution of each ϵi is
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and xi is 1, 2, or 3 with n/3 observations at each distinct value of xi. What about the sampling distributions
of β̂0 and β̂1?

Sampling distributions when n = 3:
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Sampling distributions when n = 6:
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Sampling distributions when n = 12:
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Detection: Plots of standardized or studentized residuals can reveal severe non-normality. Histograms can
be used, but quantile-quantile (qq) plots are preferred. A qq-plot is a plot of the sorted residuals against
their expected “order statistics” under the assumption that they are normally-distributed.
m <- lm(Gas ~ Insul + Temp + Insul:Temp, data = MASS::whiteside)
hist(rstandard(m))
qqnorm(rstandard(m))
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Note that it not usually appropriate to use plots of the response variable since they are not identically
distributed.

Solutions: For severe non-normality there are generally three solutions.

1. Increase n (unless n is already “sufficiently large” and then non-normality is a non-issue).

2. Transform the response variable.

3. Use a model that assumes the response variable has some other distribution.

Tests of Assumptions
A variety of statistical tests have been proposed for various assumptions, where the null hypothesis is that
the assumption is true. In my opinion these are rarely very useful for several reasons.

1. Such tests have their own assumptions, which may not be well met.

2. Such tests do not clearly reveal the severity of the violation. While it is true that tests tend to have
more power when the violation is severe, they can also have high power when the violation is negligible
(as may also be the consequences) if n is large.

3. Perhaps the question to ask is not if the assumption is wrong, but rather if it is “reasonable” — i.e., is
it “close enough” or are inferences likely to be very adversely affected?

Effects of Explanatory Variable Distributions
Regression models do not make any assumptions about the distribution of the explanatory variables. Their
distribution, however, does affect inferences just as sample size does.
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Example: Consider a linear model

E(Yi) = β0 + β1xi1 + β2xi2,

where the explanatory variables are distributed as shown below.
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40

Note the standard errors for β̂1 and β̂2 shown below.

Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
(Intercept) -0.1753 0.3543 -0.4949 6.208e-01 -0.8706 0.5199
x1 1.0264 0.1120 9.1616 2.837e-19 0.8066 1.2463
x2 0.9488 0.1120 8.4688 8.794e-17 0.7289 1.1687

Now suppose we reduce the variance of the first explanatory variable.
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Note the standard errors for β̂1 and β̂2 shown below.

Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
(Intercept) 0.2183 0.4446 0.491 6.235e-01 -0.6541 1.091
x1 0.8855 0.1757 5.039 5.568e-07 0.5406 1.230
x2 1.0002 0.1111 8.999 1.127e-18 0.7821 1.218

Now suppose that the two explanatory variables have the same variance as in the first example, but have a
much higher covariance.
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Note the standard errors for β̂1 and β̂2 shown below.

Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
(Intercept) 0.05121 0.2726 0.1879 8.510e-01 -0.4837 0.5862
x1 0.88591 0.2873 3.0838 2.100e-03 0.3222 1.4497
x2 1.15892 0.2873 4.0341 5.901e-05 0.5952 1.7227

This last example illustrates what is called (multi)collinearity where there exist λ0, λ1, λ2, . . . , λk (other than
that all λ0, λ1, λ2, . . . , λk equal zero) such that

λ0 + λ1xi1 + λ2xi2 + · · · + λkxik ≈ 0

for all observations. Another way to say this is that we could almost determine the value of one explanatory
variable from the others using a linear model where that explanatory variable is the response variable. When
there are only two explanatory variables involved this will be evident from a high correlation (in absolute
value) between those two explanatory variables.
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