
Wednesday, February 11

Linear Versus Nonlinear Models
A nonlinear regression model is any model that cannot be written as

E(Yi) = β0 + β1xi1 + β2xi2 + · · · + βkxik,

such that xi1, xi2, . . . , xik do not depend on any unknown parameters. A linear model must be linear in the
parameters.

Example: Let’s consider an exponential model for the ToothGrowth data, ignoring supplement type for now,
such that

E(Yi) = β0 + β12−di/h

where Yi is length and di is dose. If h is specified (say h = 1) we have a linear model that we can write as

E(Yi) = β0 + β1xi,

where xi = 2−di/1. We can estimate this model in the usual way using lm.
m <- lm(len ~ I(2ˆ(-dose/1)), data = ToothGrowth)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.14 1.555 22.60 1.942e-30
I(2^(-dose/1)) -33.61 2.988 -11.25 3.303e-16

But suppose we want to treat h as an unknown parameter to be estimated like β0 and β1? This would not be
a linear model. We can write the model as

E(Yi) = β0 + β1xi,

where xi = 2di/h, but now xi depends on an unknown parameter (h) and so the model is not linear in the
parameters and thus not a linear model.

Nonlinear Regression
The nls function can be used to estimate a nonlinear regression model (the nls stands for “nonlinear least
squares”). But its arguments are a little different from lm.

1. The model must be written mathematically rather than symbolically. And this requires that we know
the correct operators/functions in R corresponding to the desired mathematical operators/functions.

2. The starting values of the parameter estimates must be provided. This does two things: it identifies
what parts of the model formula are parameters, and it provides initial values for an algorithm to use
to solve the least squares optimization problem.

Example: First we will replicate the results for the linear model where h is known/specified, but now using
nls.
m <- nls(len ~ beta0 + beta1*2ˆ(-dose/1), data = ToothGrowth,

start = list(beta0 = 0, beta1 = 0))
summary(m)$coefficients

1

Estimate Std. Error t value Pr(>|t|)
beta0 35.14 1.555 22.60 1.942e-30
beta1 -33.61 2.988 -11.25 3.303e-16

Note the starting values. For a linear model we (usually) do not need to provide good starting values so
zeros work just fine. Now consider a nonlinear model where h is also an unknown parameter.
m <- nls(len ~ beta0 + beta1*2ˆ(-dose/h), data = ToothGrowth,

start = list(beta0 = 32, beta1 = -33, h = 1))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
beta0 27.9366 2.1482 13.005 1.062e-18
beta1 -36.6251 6.1143 -5.990 1.493e-07
h 0.4632 0.1459 3.174 2.422e-03

Specifying “good” starting values is important. What if we don’t provide good starting values?
m <- nls(len ~ beta0 + beta1*2ˆ(-dose/h), data = ToothGrowth,

start = list(beta0 = 0, beta1 = 0, h = 1))

Error in `nlsModel()`:
! singular gradient matrix at initial parameter estimates

How do we find good starting values? One approach is to use an approximate model like we did here that is
linear. Another approach is to “eyeball” the estimates from a plot.

We can plot the model in the usual way.
d <- expand.grid(dose = seq(0, 4, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len)) +
geom_point(aes(color = supp), alpha = 0.5) +
geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") +
theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)

2

−10

0

10

20

30

0 1 2 3 4
Dose (mg/day)

O
do

nt
ob

la
st

 L
en

gt
h

Supplement Type

OJ

VC

We can add some annotation if desired to highlight the interesting quantities.
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
beta0 27.9366 2.1482 13.005 1.062e-18
beta1 -36.6251 6.1143 -5.990 1.493e-07
h 0.4632 0.1459 3.174 2.422e-03
p <- p + geom_hline(yintercept = 27.94, linetype = 3) # asymptote (b0)
p <- p + geom_hline(yintercept = 27.94 - 36.63, linetype = 3) # intercept (b0 + b1)
p <- p + geom_hline(yintercept = 27.94 - 36.63/2, linetype = 3) # half-way (b0 + b1/2)
p <- p + geom_vline(xintercept = 0.46, linetype = 3) # half-life (h)
plot(p)

3

−10

0

10

20

30

0 1 2 3 4
Dose (mg/day)

O
do

nt
ob

la
st

 L
en

gt
h

Supplement Type

OJ

VC

Recall that the “intercept” is β0 + β1. We can make inferences concerning this quantity using lincon.
m <- nls(len ~ beta0 + beta1*2ˆ(-dose/h), data = ToothGrowth,

start = list(beta0 = 32, beta1 = -33, h = 0.75))
lincon(m, a = c(1,1,0)) # 1*b0 + 1*b1 + 0*h = b0 + b1

estimate se lower upper tvalue df pvalue
(1,1,0),0 -8.688 7.562 -23.83 6.455 -1.149 57 0.2554

Does this make sense?

We can also replicate the estimates of the asymptote (β0) and half-life (h) parameters using lincon.
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
beta0 27.9366 2.1482 13.005 1.062e-18 24.7232 37.229
beta1 -36.6251 6.1143 -5.990 1.493e-07 -57.3146 -28.105
h 0.4632 0.1459 3.174 2.422e-03 0.2647 1.135
lincon(m, c(1,0,0)) # asymptote (beta0)

estimate se lower upper tvalue df pvalue
(1,0,0),0 27.94 2.148 23.63 32.24 13 57 1.062e-18
lincon(m, c(0,0,1)) # half-life (h)

estimate se lower upper tvalue df pvalue
(0,0,1),0 0.4632 0.1459 0.171 0.7554 3.174 57 0.002422

Note the difference in the confidence intervals (particularly for h). Here confint and lincon using different

4

kinds of confidence intervals: confint uses “profile-likelihood” intervals and lincon uses “Wald” intervals.
We will discuss profile-likelihood confidence intervals later, but note here that typically they are more accurate.

The emmeans and contrast functions cannot (yet) be applied to a nls object. We must rely on something
like lincon or clever parameterization (see below).

Now consider the model

E(Yi) =
{

β0 + β12−xi/hOJ , if the supplement type is OJ,

β0 + β12−xi/hVC , if the supplement type is VC,

where xi is dose. There are several ways we can handle case-wise models with nls: indicator variables, the
ifelse function, and the case_when function.

1. We could write the model as
E(Yi) = β0 + β12−xi/(oihOJ+vihVC),

where oi and vi are indicator variables for the OJ and VC supplement types, respectively. In R we can
program these indicator variables as supp == "OJ" and supp == "VC", respectively. These will return
TRUE or FALSE, but will be interpreted as 1 or 0, respectively, if used in a calculation. Here is how we
can write this model in nls.
m <- nls(len ~ b0 + b1*2ˆ(-dose/((supp == "OJ")*hoj + (supp == "VC")*hvc)),

data = ToothGrowth, start = c(b0 = 28, b1 = -37, hoj = 0.46, hvc = 0.46))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 27.5018 1.39516 19.712 7.258e-27
b1 -39.5856 5.47238 -7.234 1.422e-09
hoj 0.3382 0.06978 4.846 1.036e-05
hvc 0.5001 0.11208 4.462 3.963e-05

We could actually get away with one indicator variable if we are a little clever (and we are).
m <- nls(len ~ b0 + b1*2ˆ(-dose/((supp == "OJ")*hoj + (1 - (supp == "OJ"))*hvc)),

data = ToothGrowth, start = c(b0 = 28, b1 = -37, hoj = 0.46, hvc = 0.46))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 27.5018 1.39516 19.712 7.258e-27
b1 -39.5856 5.47238 -7.234 1.422e-09
hoj 0.3382 0.06978 4.846 1.036e-05
hvc 0.5001 0.11208 4.462 3.963e-05

Here is a plot of the model with the data.
d <- expand.grid(dose = seq(0, 4, length = 100), supp = c("OJ","VC"))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) +
geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") +
theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)

5

−10

0

10

20

30

0 1 2 3 4
Dose (mg/day)

O
do

nt
ob

la
st

 L
en

gt
h

Supplement Type

OJ

VC

2. When there are only two cases it can be convenient to use ifelse.
m <- nls(len ~ b0 + b1*2ˆ(-dose/ifelse(supp == "OJ", hoj, hvc)),

start = c(b0 = 28, b1 = -37, hoj = 0.46, hvc = 0.46),
data = ToothGrowth)

summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 27.5018 1.39516 19.712 7.258e-27
b1 -39.5856 5.47238 -7.234 1.422e-09
hoj 0.3382 0.06978 4.846 1.036e-05
hvc 0.5001 0.11208 4.462 3.963e-05

Here is another way we could write that using ifelse.
m <- nls(len ~ ifelse(supp == "OJ", b0 + b1*2ˆ(-dose/hoj), b0 + b1*2ˆ(-dose/hvc)),

start = c(b0 = 28, b1 = -37, hoj = 0.46, hvc = 0.46),
data = ToothGrowth)

summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 27.5018 1.39516 19.712 7.258e-27
b1 -39.5856 5.47238 -7.234 1.422e-09
hoj 0.3382 0.06978 4.846 1.036e-05
hvc 0.5001 0.11208 4.462 3.963e-05

3. When there are more than two cases using ifelse can be tedious because we have to use nested ifelse
functions. An easier approach is to use the case_when function from the dplyr package.

6

library(dplyr) # for case_when
m <- nls(len ~ case_when(

supp == "OJ" ~ b0 + b1*2ˆ(-dose/hoj),
supp == "VC" ~ b0 + b1*2ˆ(-dose/hvc),

), data = ToothGrowth, start = c(b0 = 28, b1 = -37, hoj = 0.46, hvc = 0.46))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 27.5018 1.39516 19.712 7.258e-27
b1 -39.5856 5.47238 -7.234 1.422e-09
hoj 0.3382 0.06978 4.846 1.036e-05
hvc 0.5001 0.11208 4.462 3.963e-05

Ultimately it may be a matter of which is easiest to code.

Suppose we want to compare the two supplement types by making inferences about the difference hVC − hOJ?
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 27.5018 1.39516 19.712 7.258e-27
b1 -39.5856 5.47238 -7.234 1.422e-09
hoj 0.3382 0.06978 4.846 1.036e-05
hvc 0.5001 0.11208 4.462 3.963e-05
lincon(m, a = c(0,0,-1,1)) # 0*b0 + 0*b1 - 1*hoj + 1*hvc = hvc - hoj

estimate se lower upper tvalue df pvalue
(0,0,-1,1),0 0.162 0.05532 0.05115 0.2728 2.928 56 0.004927

But suppose we parameterize the model as

E(Yi) =
{

β0 + β12−xi/h, if the supplement type is OJ,

β0 + β12−xi/(h+δ), if the supplement type is VC,

so that h is the half-life parameter for OJ, h + δ is the half-life parameter for VC, and δ is the difference
between them.
m <- nls(len ~ case_when(

supp == "OJ" ~ b0 + b1*2ˆ(-dose/h),
supp == "VC" ~ b0 + b1*2ˆ(-dose/(h + delta))
), data = ToothGrowth, start = c(b0 = 28, b1 = -37, h = 0.46, delta = 0))

summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 27.5018 1.39516 19.712 7.258e-27
b1 -39.5856 5.47238 -7.234 1.422e-09
h 0.3382 0.06978 4.846 1.036e-05
delta 0.1620 0.05532 2.928 4.927e-03

Same model, different parameterization. Now we do not need to use lincon to obtain inferences for the
difference between the two half life parameters, although we would need to use it to obtain inferences for the
half life parameter for VC which is h + δ.
lincon(m, a = c(0, 0, 1, 1))

estimate se lower upper tvalue df pvalue
(0,0,1,1),0 0.5001 0.1121 0.2756 0.7247 4.462 56 3.963e-05

7

Interestingly using confint throws an error when trying to compute the profile-likelihood confidence interval
for δ, although we can fix it by increasing the maximum number of iterations used in the estimation process
(which is also used by confint).
confint(m)

Error in `prof$getProfile()`:
! number of iterations exceeded maximum of 50
m <- nls(len ~ b0 + b1*2ˆ(-dose/ifelse(supp == "OJ", h, h + delta)),

data = ToothGrowth, start = c(b0 = 28, b1 = -37, h = 0.46, delta = 0),
control = nls.control(maxiter = 1000))

confint(m)

2.5% 97.5%
b0 25.18143 30.8451
b1 -53.75676 -31.4127
h 0.23541 0.5268
delta 0.08001 0.2929

Alternatively we can easily compute a Wald confidence interval.
lincon(m, a = c(0,0,0,1)) # 0*b0 + 0*b1 + 0*h + 1*delta = delta

estimate se lower upper tvalue df pvalue
(0,0,0,1),0 0.162 0.05532 0.05115 0.2728 2.928 56 0.004927

Actually if you omit the a argument lincon will return inferences for the model parameters like those given
by summary and confint (but using Wald confidence intervals).
lincon(m)

estimate se lower upper tvalue df pvalue
b0 27.5018 1.39516 24.70701 30.2967 19.712 56 7.258e-27
b1 -39.5856 5.47238 -50.54805 -28.6231 -7.234 56 1.422e-09
h 0.3382 0.06978 0.19838 0.4779 4.846 56 1.036e-05
delta 0.1620 0.05532 0.05115 0.2728 2.928 56 4.927e-03

This effectively causes lincon to use four sets of coefficients to make inferences about each parameter:
c(1,0,0,0), c(0,1,0,0), c(0,0,1,0), and c(0,0,0,1).

How about we constrain the model such that the expected response is zero when the dose is zero (although
this may not be realistic here) such that the “intercept” β0 + β1 = 0, implying that β1 = −β0.
m <- nls(len ~ case_when(

supp == "OJ" ~ b0 - b0*2ˆ(-dose/hoj),
supp == "VC" ~ b0 - b0*2ˆ(-dose/hvc),
), data = ToothGrowth, start = c(b0 = 28, hoj = 0.46, hvc = 0.46))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 30.5061 2.0724 14.720 4.481e-21
hoj 0.5805 0.0929 6.249 5.616e-08
hvc 0.8654 0.1219 7.102 2.154e-09
d <- expand.grid(dose = seq(0, 4, length = 100), supp = c("OJ","VC"))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) +

8

geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length", color = "Supplement Type") +
theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)

0

10

20

30

0 1 2 3 4
Dose (mg/day)

O
do

nt
ob

la
st

 L
en

gt
h

Supplement Type

OJ

VC

lincon(m, a = c(0,-1,1))

estimate se lower upper tvalue df pvalue
(0,-1,1),0 0.2849 0.07893 0.1269 0.443 3.61 57 0.0006473

Estimating a Linear Model with nls

We can use nls to estimate a linear model. Consider the following linear model.
m.whiteside <- lm(Gas ~ Insul + Temp + Insul:Temp, data = MASS::whiteside)
summary(m.whiteside)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8538 0.13596 50.409 7.997e-46
InsulAfter -2.1300 0.18009 -11.827 2.316e-16
Temp -0.3932 0.02249 -17.487 1.976e-23
InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04

This can be written as
E(Gi) = β0 + β1di + β2ti + β3diti,

9

where Gi is gas consumption, ti is temperature, and di is defined as

di =
{

1, if the i-th observation is after insulation,

0, otherwise.

Thus we can also write the model case-wise as

E(Gi) =
{

β0 + β2ti, if the i-th observation is before insulation,

β0 + β1 + (β2 + β3)ti, if the i-th observation is after insulation.

Here are a few different ways to estimate this model using nls.
m1 <- nls(Gas ~ b0 + b1*(Insul == "After") + b2*Temp + b3*(Insul == "After")*Temp,

data = MASS::whiteside, start = c(b0 = 0, b1 = 0, b2 = 0, b3 = 0))
summary(m1)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 6.8538 0.13596 50.409 7.997e-46
b1 -2.1300 0.18009 -11.827 2.316e-16
b2 -0.3932 0.02249 -17.487 1.976e-23
b3 0.1153 0.03211 3.591 7.307e-04
m2 <- nls(Gas ~ ifelse(Insul == "Before", b0 + b2*Temp,

b0 + b1 + (b2 + b3)*Temp), data = MASS::whiteside,
start = c(b0 = 0, b1 = 0, b2 = 0, b3 = 0))

summary(m2)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 6.8538 0.13596 50.409 7.997e-46
b1 -2.1300 0.18009 -11.827 2.316e-16
b2 -0.3932 0.02249 -17.487 1.976e-23
b3 0.1153 0.03211 3.591 7.307e-04
m3 <- nls(Gas ~ case_when(

Insul == "Before" ~ b0 + b2*Temp,
Insul == "After" ~ b0 + b1 + (b2 + b3)*Temp),
data = MASS::whiteside,
start = c(b0 = 0, b1 = 0, b2 = 0, b3 = 0))

summary(m3)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 6.8538 0.13596 50.409 7.997e-46
b1 -2.1300 0.18009 -11.827 2.316e-16
b2 -0.3932 0.02249 -17.487 1.976e-23
b3 0.1153 0.03211 3.591 7.307e-04

Estimated Expected Responses With nls

The predict function produces the estimated expected response for any combination of explanatory variables.
For example,
d <- expand.grid(supp = c("VC","OJ"), dose = c(0.5, 1, 1.5, 2))
d$yhat <- predict(m, newdata = d)
d

supp dose yhat
1 VC 0.5 10.07
2 OJ 0.5 13.71

10

3 VC 1.0 16.81
4 OJ 1.0 21.26
5 VC 1.5 21.33
6 OJ 1.5 25.42
7 VC 2.0 24.36
8 OJ 2.0 27.71

However predict does not provide standard errors or confidence intervals for estimating expected responses
based on nls, and we cannot use contrast with nls. But we can use the function nlsint from the trtools
package to get approximate standard errors and confidence or prediction intervals from a nls object.
library(trtools)
nlsint(m, newdata = d)

fit se lwr upr
1 10.07 0.6638 8.738 11.40
2 13.71 0.8906 11.931 15.50
3 16.81 0.8102 15.190 18.43
4 21.26 0.8275 19.606 22.92
5 21.33 0.8007 19.728 22.93
6 25.42 0.8035 23.809 27.03
7 24.36 0.8456 22.665 26.05
8 27.71 1.0573 25.588 29.82
cbind(d, nlsint(m, newdata = d))

supp dose yhat fit se lwr upr
1 VC 0.5 10.07 10.07 0.6638 8.738 11.40
2 OJ 0.5 13.71 13.71 0.8906 11.931 15.50
3 VC 1.0 16.81 16.81 0.8102 15.190 18.43
4 OJ 1.0 21.26 21.26 0.8275 19.606 22.92
5 VC 1.5 21.33 21.33 0.8007 19.728 22.93
6 OJ 1.5 25.42 25.42 0.8035 23.809 27.03
7 VC 2.0 24.36 24.36 0.8456 22.665 26.05
8 OJ 2.0 27.71 27.71 1.0573 25.588 29.82

The intervals are confidence intervals by default. Prediction intervals can be obtained using interval =
prediction (as you would with the predict function with a linear model).

The reason why predict does not provide standard errors and thus confidence intervals for a nls object is
that the estimated expected response is not a linear function of the model parameters in a nonlinear model.
The nlsint function uses what is called the delta method to come up with an approximate standard error.
We will discuss the delta method later.

The nlsint function is also useful for plotting confidence and/or prediction intervals.
d <- expand.grid(supp = c("OJ", "VC"), dose = seq(0, 2.25, length = 100))
d <- cbind(d, nlsint(m, newdata = d))

p <- ggplot(ToothGrowth, aes(x = dose, y = len)) +
geom_point() + facet_wrap(~ supp) + theme_minimal() +
geom_line(aes(y = fit), data = d) +
geom_ribbon(aes(x = dose, ymin = lwr, ymax = upr, y = NULL),

alpha = 0.25, data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length")

plot(p)

11

OJ VC

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0

10

20

30

Dose (mg/day)

O
do

nt
ob

la
st

 L
en

gt
h

d <- expand.grid(supp = c("OJ", "VC"), dose = seq(0, 2.25, length = 100))
d <- cbind(d, nlsint(m, newdata = d, interval = "prediction"))
p <- p + geom_ribbon(aes(x = dose, ymin = lwr, ymax = upr, y = NULL),

alpha = 0.25, data = d)
plot(p)

12

OJ VC

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0

10

20

30

Dose (mg/day)

O
do

nt
ob

la
st

 L
en

gt
h

13

	Linear Versus Nonlinear Models
	Nonlinear Regression
	Estimating a Linear Model with nls
	Estimated Expected Responses With nls

