
Monday, February 10

Mathematical (statistical) models make assumptions, and results (statistical inferences) based on the models
are derived using those assumptions.

Example: Assume that an object is a cone. It can be shown (with a little calculus) that

V = πr2h/3 and A = πr
(

r +
√

r2 + h2
)

,

based on the assumption that the object is a cone.

“All models are wrong but some are useful.’ ’ — George E. P. Box

Implicit Assumptions of Linear and Nonlinear Regression
Discussions of assumptions are based on an alternative representation of a regression model. A linear model
can be written as

Yi = β0 + β1xi1 + β2xi2 + · · · + βkxik + ϵi,

and a nonlinear model can be written as

Yi = f(xi1, xi2, . . . , xik) + ϵi,

where the linear model with

f(xi1, xi2, . . . , xik) = β0 + β1xi1 + β2xi2 + · · · + βkxik

is a special case.

There are four implicit assumptions about ϵi that go into the derivation of routine/default methods for
making inferences concerning the model.

1. E(ϵi) = 0 for all i.

2. V ar(ϵi) = σ2 for all i.

3. Cov(ϵi, ϵi′) = 0 for all i ̸= i′.

4. Each ϵi has a normal distribution.

How should we approach each assumption?

1. How do we define each assumption?

2. What are the consequences if the assumption is (very) wrong?

3. How do we detect if the assumption is (very) wrong?

4. What is/are the solution(s) if the assumption is (very) wrong?

Assumption 1: Zero Expectations of Errors
Definition: The assumption E(ϵi) = 0 implies that E(Yi) depends on the explanatory variables in the way
assumed by the model. That is, if we have the assumed model

E(Yi) = f(xi1, xi2, . . . , xik)
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then
E(ϵi) = 0 ⇒ E(Yi) = f(xi1, xi2, . . . , xik).

For the model to be a correct representation of the relationship between E(Yi) and xi1, xi2, . . . , xik we require
that E(ϵi) = 0 for all i = 1, 2, . . . , n.

Consequences: Estimates of parameters or some functions thereof (e.g., linear combinations) may be biased.

Detection: Residuals are statistics that are frequently used to empirically investigate assumption violations.
There are several types of residuals.

1. Raw residuals. These are simply estimates of ϵi. In a linear model, for example, the error is

ϵi = Yi − (β0 + β1xi1 + · · · + βkxik),

by definition, so a simple estimator of ϵi is the residual

ei = Yi − Ŷi,

where
Ŷi = β̂0 + β̂1xi1 + · · · + β̂kxik.

We can define the raw residual in a similar way for a nonlinear model.

2. Standardized residuals. Defined as
zi = ei

SE(ei)
.

If the model assumptions are correct then zi is approximately standard normal in distribution so we
expect that about 95% of such residuals to satisfy |zi| < 2.

3. Studentized residuals. Defined as
ti = ei

SE(i)(ei)
,

where SE(i)(ei) is the standard error of ei estimated by leaving out that observation. This avoids bias
in the standard error in cases where E(ϵi) ̸= 0. If the model assumptions are met then each ti has a t
distribution with one less degree of freedom than the residual degrees of freedom (i.e., n − p − 1 where
p is the number of parameters in the model). Unless n − p − 1 is very small, we expect that about 95%
of studentized residuals satisfy |ti| < 2.

What to look for in residuals:

1. Individual observations with exceptional residuals.

2. More residuals than expected overall that are exceptional.

3. Changes in the distribution of residuals when plotting against ŷi.

Example: Consider the following artificial data.
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Suppose we tried a linear model.
mlinear <- lm(y ~ x, data = fakedata)
fakedata$yhat <- predict(mlinear) # y-hat values
fakedata$rese <- residuals(mlinear) # raw residuals
fakedata$rest <- rstudent(mlinear) # studentized residuals
head(fakedata)

x y yhat rese rest
1 0.000 183.5 176.2 7.311 2.198
2 5.102 181.3 174.7 6.525 1.936
3 10.204 180.4 173.3 7.113 2.121
4 15.306 176.6 171.8 4.813 1.396
5 20.408 174.4 170.4 3.964 1.140
6 25.510 173.5 168.9 4.547 1.311

p <- p + geom_line(aes(y = yhat), data = fakedata)
plot(p)
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What are the observations with “exceptionally large” residuals?
subset(fakedata, abs(rest) > 2)

x y yhat rese rest
1 0.0 183.5 176.2 7.311 2.198
3 10.2 180.4 173.3 7.113 2.121

library(dplyr)
fakedata %>% filter(abs(rest) > 2)

x y yhat rese rest
1 0.0 183.5 176.2 7.311 2.198
2 10.2 180.4 173.3 7.113 2.121

Are there any patterns?
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p <- ggplot(fakedata, aes(x = yhat, y = rest))
p <- p + geom_segment(aes(x = yhat, xend = yhat, y = 0, yend = rest))
p <- p + geom_point() + theme_classic()
p <- p + labs(x = "Predicted Value", y = "Studentized Residual")
p <- p + geom_hline(yintercept = c(-2, 0, 2), linetype = 2)
plot(p)
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Let’s try the polynomial model E(Yi) = β0 + β1xi + β2x2
i .

mpoly <- lm(y ~ poly(x, degree = 2), data = fakedata)
fakedata$yhat <- predict(mpoly)
fakedata$rest <- rstudent(mpoly)

p <- ggplot(fakedata, aes(x = x, y = y)) + theme_minimal()
p <- p + geom_point() + geom_line(aes(y = yhat))
plot(p)
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p <- ggplot(fakedata, aes(x = yhat, y = rest)) +
geom_segment(aes(x = yhat, xend = yhat, y = 0, yend = rest)) +
geom_point() + theme_classic() +
labs(x = "Predicted Value", y = "Studentized Residual") +
geom_hline(yintercept = c(-2, 0, 2), linetype = 2)

plot(p)
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The “correct” model is the nonlinear model

E(Yi) = α + (δ − α)2−xi/γ .

mnlin <- nls(y ~ alpha + (delta - alpha) * 2ˆ(-x / gamma),
data = fakedata, start = list(alpha = 80, delta = 180, gamma = 140))

library(trtools) # for the nlsint function
d <- nlsint(mnlin, residuals = TRUE)
head(d)

fit se lwr upr hat res
1 184.3 0.3894 183.5 185.1 0.21231 -1.08147
2 181.7 0.3481 181.0 182.4 0.16966 -0.61684
3 179.2 0.3112 178.6 179.9 0.13564 1.49073
4 176.8 0.2788 176.2 177.3 0.10888 -0.16877
5 174.4 0.2510 173.9 174.9 0.08820 -0.06274
6 172.1 0.2276 171.6 172.5 0.07256 1.72687

p <- ggplot(d, aes(x = fit, y = res)) +
geom_segment(aes(x = fit, xend = fit, y = 0, yend = res)) +
geom_point() + theme_classic() +
labs(x = "Predicted Value", y = "Standardized Residual") +
geom_hline(yintercept = c(-2, 0, 2), linetype = 2)

plot(p)
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Note that since we are usually not interested in created publication quality residual plots, we can do some
quick-and-dirty plots with simpler (but uglier) graphics.
# when using lm
m <- lm(y ~ x, data = fakedata)
plot(predict(m), rstudent(m))
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# when using nls
mnlin <- nls(y ~ alpha + (delta - alpha) * 2ˆ(-x / gamma),

data = fakedata, start = list(alpha = 80, delta = 180, gamma = 140))
d <- nlsint(mnlin, residuals = TRUE) # nlsint is from trtools package
plot(d$fit, d$res)
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Example: Consider a model where the expected MPG of cars is assumed to be a linear function of weight
and rear axle ratio.
cars <- read.csv("http://webpages.uidaho.edu/~trjohns/cars.csv")
cars <- cars[,c(2,3,4,5)] # select columns 2, 3, 4, and 5
head(cars)

car mpg weight ratio
1 Buick Estate Wagon 16.9 4.360 2.73
2 Ford Country Squire Wagon 15.5 4.054 2.26
3 Chevy Malibu Wagon 19.2 3.605 2.56
4 Chrysler LeBaron Wagon 18.5 3.940 2.45
5 Chevette 30.0 2.155 3.70
6 Toyota Corona 27.5 2.560 3.05

m <- lm(mpg ~ weight + ratio, data = cars)
cars$yhat <- predict(m)
cars$rest <- rstudent(m)
subset(cars, abs(rest) > 2)

car mpg weight ratio yhat rest
1 Buick Estate Wagon 16.9 4.36 2.73 10.32 3.944
34 Fiat Strada 37.3 2.13 3.10 32.67 2.348

p <- ggplot(cars, aes(x = rest, y = car)) + geom_point() +
theme_classic() +
geom_segment(aes(x = 0, xend = rest, y = car, yend = car)) +
labs(x = "Studentized Residual", y = NULL)
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plot(p)
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What is up with the Buick Estate Wagon?

Solutions: Modify the model. Drop offending obsrevations(s) if and only if you can justify restricting the
scope of the model.

Assumption 2: Equality of Error Variances
Definition: In the regression model

Yi = f(xi1, xi2, . . . , xik) + ϵi,

we assume Var(ϵi) = σ2 which implies Var(Yi) = σ2. This is called “homoscedasticty” or sometimes
“homogeneity of variance” in the context of linear models for designed experiments. A more complete
description of the assumed model is

E(Yi) = f(xi1, xi2, . . . , xik), (1)
Var(Yi) = σ2. (2)
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Note that the estimator σ̂2, the square of the “residual standard error” reported by summary, is computed as

σ̂2 =
∑n

i=1(yi − ŷi)2

n − p
,

where p is the number of parameters in the part of the model for E(Yi) (which is p = k + 1 in a linear model
with a β0 term and k explanatory variables).

Consequences: Severe violations of homoscedaticity can result in two problems.

1. Biased standard errors, incorrect p-values, and incorrect confidence/prediction intervals.

2. Inefficient estimation of model parameters (and functions thereof).

Detection: Many common patterns of heteroscedasticity can be found by plotting standardized or studentized
residuals against ŷi.

Example: Consider the following data on survival time of terminal cancer patients given a supplement of
ascorbate (i.e., vitamin C).
library(Stat2Data)
data(CancerSurvival) # this package requires that we "load" the data
head(CancerSurvival)

Survival Organ
1 124 Stomach
2 42 Stomach
3 25 Stomach
4 45 Stomach
5 412 Stomach
6 51 Stomach

For plotting purposes we can order the levels of Organ according to mean survival using reorder.
CancerSurvival$Organ <- with(CancerSurvival, reorder(Organ, Survival, mean))

The with function implies that each variable is “with” the data frame CancerSurvival. This is sometimes
nicer than having to identify the data frame explicitly as in the following.
CancerSurvival$Organ <- reorder(CancerSurvival$Organ, CancerSurvival$Survival, mean)

Here is a plot of the data using geom_jitter to space out the points.
p <- ggplot(CancerSurvival, aes(x = Organ, y = Survival)) +

geom_jitter(height = 0, width = 0.25) +
labs(y = "Survival Time (Days)") + theme_classic()

plot(p)
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Here we can see some descriptive statistics.
library(dplyr)
CancerSurvival %>% group_by(Organ) %>%

summarize(mean = mean(Survival), stdev = sd(Survival), obs = n())

# A tibble: 5 x 4
Organ mean stdev obs
<fct> <dbl> <dbl> <int>

1 Bronchus 212. 210. 17
2 Stomach 286 346. 13
3 Colon 457. 427. 17
4 Ovary 884. 1099. 6
5 Breast 1396. 1239. 11

Now consider a linear model that assumes homoscedasticity.
m <- lm(Survival ~ Organ, data = CancerSurvival)
CancerSurvival$yhat <- predict(m)
CancerSurvival$rest <- rstudent(m)
head(CancerSurvival)

Survival Organ yhat rest
1 124 Stomach 286 -0.2498
2 42 Stomach 286 -0.3765
3 25 Stomach 286 -0.4029
4 45 Stomach 286 -0.3719
5 412 Stomach 286 0.1943
6 51 Stomach 286 -0.3626
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p <- ggplot(CancerSurvival, aes(x = yhat, y = rest, color = Organ)) +
geom_point(alpha = 0.5) + theme_classic() +
labs(x = "Predicted Value", y = "Studentized Residual")

plot(p)
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Example: Consider the following data from a study on the effects of fuel reduction on biomass.
library(trtools) # for biomass data

m <- lm(suitable ~ -1 + treatment:total, data = biomass)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
treatmentn:total 0.1056 0.04183 2.524 1.31e-02
treatmenty:total 0.1319 0.01121 11.773 7.61e-21

d <- expand.grid(treatment = c("n","y"), total = seq(0, 2767, length = 10))
d$yhat <- predict(m, newdata = d)

p <- ggplot(biomass, aes(x = total, y = suitable, color = treatment)) +
geom_point() + geom_line(aes(y = yhat), data = d) + theme_minimal() +
labs(x = "Total Biomass (kg/ha)", y = "Suitable Biomass (kg/ha)",

color = "Treatment")
plot(p)
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biomass$yhat <- predict(m)
biomass$rest <- rstudent(m)

p <- ggplot(biomass, aes(x = yhat, y = rest, color = treatment)) +
geom_point() + theme_minimal() +
labs(x = "Predicted Value", y = "Studentized Residual",

color = "Treatment")
plot(p)
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Solutions: There are several possible solutions.

1. Response variable transformation.

2. Weighted least squares.

3. Robust standard error estimators.

4. Models that do not assume constant variance.

We will discuss each of these in turn soon.
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