Monday, February 9

Modeling Nonlinearity

Four approaches to modeling a nonlinear relationship between the expected response and a quantitative
explanatory variable.

1. polynomials

2. transformations

3. splines

4. nonlinear regression

The first three can be done with linear models.

Polynomial Regression
If we have a single quantitative explanatory variable x;, then a polynomial regression model of degree k is
E(Y:) = Bo+ Pri + Bo} + -+ + By
Note that this is a linear model since we can write it as
E(Y:) = Bo + Biwir + Bawia + - + Brwix,
where x;1 = x;,T;0 = ;E?, e T = xf

Example: Consider again the ToothGrowth data but with dose treated as a quantitative explanatory variable,
and ignoring supplement type for now. Note the use of the “inhibit” function I here.

m <- Im(len ~ dose + I(dose"2), data = ToothGrowth)
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)

(Intercept) -2.49 3.178 -0.7836 4.365e-01
dose 30.16 6.147 4.9052 8.148e-06
I(dose™2) -7.93 2.366 -3.3514 1.432e-03

This model is
E(L;) = Bo + B1d; + Bad3,

where d; is dose.

d <- expand.grid(dose = seq(0.25, 2.25, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len)) +

geom_point(aes(color = supp), alpha = 0.5) +

geom_line(aes(y = yhat), data = d) +

labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") +

theme_minimal() +

theme (legend.position = "inside", legend.position.inside = c(0.8,0.2))
plot(p)
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Note that the following are equivalent ways to specify this model.

# create a new variable for squared dose
ToothGrowth$dose2 <- ToothGrowth$dose 2
m <- Im(len ~ dose + dose2, data = ToothGrowth)

# spectify squared dose in the model formula using the "inhibit" function
m <- 1m(len ~ dose + I(dose”2), data = ToothGrowth)

# use the poly function to create the extra term
m <- Im(len ~ poly(dose, degree = 2), data = ToothGrowth)

I recommend not using the first approach of creating a new variable only because it is easier to have the
transformation “built in” to the model when applying other functions to the model object like predict or
contrast.

Note: Using poly without the option raw = TRUE will produce “orthogonal polynomials” which is a re-
parameterization of the model. This approach is sometimes recommended due to numerical instability of
“raw” polynomials, but in many cases this is not an issue. But the poly function is sometimes convenient,
especially for polynomials of higher degree.

Clearly in such a model the rate of change in expected length is not necessarily constant.

library(trtools)
contrast(m, a = list(dose = 1), b = list(dose = 0.5)) # 0.5 to 1

estimate se lower upper tvalue df pvalue
9.13 1.341 6.444 11.82 6.806 57 6.697e-09



contrast(m, a = list(dose = 1.5), b = list(dose = 1)) # 1 to 1.5

estimate se lower upper tvalue df pvalue
5.165 0.4472 4.27 6.06 11.55 57 1.47e-16

This can also be seen mathematically by writing the model as
E(L;) = Bo + Prz; + oz} = Bo + (B1 + Baxs) m; = Bo + bizs,
—_——
d;

so that the rate of change in length per unit increase in dose depends on dose (if B2 # 0). In a sense, dose is
“interacting with itself” — i.e., the “effect” of a one unit increase in dose depends on the dose.

We can have the polynomial depend on (i.e, interact with) supplement type.

m <- Im(len ~ dose + I(dose”2) + supp + dose:supp + I(dose”2):supp, data = ToothGrowth)
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)

(Intercept) -1.433 3.847 -0.3726 7.109e-01
dose 34.520 7.442 4.6384 2.272e-05
I(dose™2) -10.387 2.864 -3.6260 6.383e-04
suppVC -2.113 5.440 -0.3885 6.992e-01
dose: suppVC -8.730 10.525 -0.8295 4.105e-01
I(dose™2) :suppVC 4.913 4.051 1.2129 2.305e-01

Note that we could also have written

m <- Im(len ~ poly(dose, 2)#*supp, data = ToothGrowth)

In a model formula argument, a*b expands toa + b + a:b.

This model can be written as

B(Li) = Bo + Brd; + B2d2, if supplement type is OJ,
' Bo+ B3+ (B1+ Ba)di + (B2 + Bs)d;,  if supplement type is VC,

where d; is dose, or alternatively as

B(L;) = Bo + Bid; + B2d?,  if supplement type is OJ,
! Yo + Y1d; + y2d?, if supplement type is VC,

where vg = 8o + B3, 71 = 01 + B4, and 2 = B2 + B5. There is a distinct polynomial of degree two for each
supplement type.

d <- expand.grid(supp = c("0J", "VC"), dose = seq(0.25, 2.25, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",
color = "Supplement Type") + theme_minimal() +
theme (legend.position = "inside", legend.position.inside = c¢(0.8,0.2))
plot (p)
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Polynomials are, in principle, quite general. But in many cases we would like to have a monotonic relationship,
and/or have a model exhibit an asymptote. Finally, the parameters of a polynomial model are not easily to

interpret.

Logarithmic Transformations

Applying a logarithmic transformation to an explanatory variable may be useful
that tend to have “diminishing returns” with respect to the expected response.

for explanatory variables

Example: Consider a linear model for expected length but now with log(dose) as the explanatory variable.

m <- 1m(len ~ log(dose) + supp + log(dose):supp, data = ToothGrowth)
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)

(Intercept) 20.663 0.6791 30.425 1.629e-36
log(dose) 9.255 1.2000 7.712 2.303e-10
suppVC -3.700 0.9605 -3.852 3.033e-04
log(dose) : suppVC 3.845 1.6971 2.266 2.737e-02

d <- expand.grid(supp = c("0J", "VC"), dose = seq(0.25, 2.25, length
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") + theme_minimal() +
theme (legend.position = "inside", legend.position.inside = c¢(0.8,0

= 100))

.2))



plot(p)
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Note that log is the “natural” logarithm or base-e logarithm sometimes written as In(z) or log,(z). Here are
few things to remember about logarithms when using them for transformations of explanatory variables.

1. Logarithms of different bases are proportional such that

log (z) = clog, (),

where ¢ = 1/log, (b). So usually when we are using things like contrast or the emmeans package to
facilitate our inferences the base does not matter. You can use log2 for log,(x) and logl0 for log;q(x),
and for an arbitrary base b you can use log(x,b) for log,(x).

m <- 1m(len ~ log2(dose) + supp + log2(dose):supp, data = ToothGrowth)
summary (m) $coefficients

Estimate Std. Error t value Pr(>ltl)

(Intercept) 20.663 0.6791 30.425 1.629e-36
log2(dose) 6.415 0.8318 7.712 2.303e-10
suppVC -3.700 0.9605 -3.852 3.033e-04
log2(dose) : suppVC 2.665 1.1763  2.266 2.737e-02

d <- expand.grid(supp = c("0J", "VC"), dose = seq(0.25, 2.25, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point (alpha = 0.5) + geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",



color = "Supplement Type") + theme_minimal() +
theme (legend.position = "inside", legend.position.inside = ¢(0.8,0.2))
plot(p)
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2. If we apply a log transformation to z, then the effect of increasing/decreasing by some amount is not
constant, but the effect of increasing/decreasing x by a factor is constant. For example, suppose we
have the model

E(Y) = o + 1 1og(x).

Then for any ¢ > 0 then

Bo + 51 log(ex) = Bo + 51 log(c) + 51 log(z) = E(Y) + 51 log(c)

so then E(Y) increases/decreases by (1 log(c). For example, the effect of doubling of halving dose is
constant in this model.

contrast(m,
a = list(dose = 1, supp = c("0J","VC")),
b list(dose = 0.5, supp = c("0J","VC")),
cnames = c("0J", "VC"))

estimate se lower wupper tvalue df pvalue
0J 6.415 0.8318 4.749 8.081 7.712 56 2.303e-10
vC 9.080 0.8318 7.414 10.746 10.916 56 1.733e-15

contrast (m,
a = list(dose = 2, supp = c("0J","VC")),
b = list(dose = 1, supp = c("0J","VC")),
cnames = c("0J", "VC"))



estimate se lower wupper tvalue df pvalue
0J 6.415 0.8318 4.749 8.081 7.712 56 2.303e-10
vC 9.080 0.8318 7.414 10.746 10.916 56 1.733e-15

3. Recall that log(x) is only defined for = > 0.

Exponential Transformations

Consider the linear model
E(Y) =By + pr27/"

where h > 0 is some specified value. This applies an exponential transformation to x with the following
properties.

1. If £ =0 then E(Y) = By + (1, so the “y-intercept” is Sy + 5.

2. As z increases then E(Y') approaches an asymptote of Sy. This is an upper (if f; < 0) or lower (if
B1 > 0) asymptote.!

3. The quantity h can be interpreted as the “half-life” of the curve in the sense that it is the value of
x at which the expected responses is half way between the intercept at Sy + 1 and its upper/lower
asymptote at 3y because if x = h then

E(Y) =B+ 127" = By + B1/2,

and Sy + f1/2 is the midpoint between the “intercept” of E(Y) = Sy + 51 and the asymptote of S.

4. If 51 < 0 then —f3; is how much E(Y) increases from x = 0 as it approaches the asymptote, while if
B1 > 0 then f; is how much E(Y) decreases from when x = 0 as it approaches the asymptote.

LThis can be seen by showing that limz— 0o 8o + 8127%/" = Bo if h > 0, and by showing that the first derivative of
Bo + B12-%/" with respect to z is positive if 81 < 0 and negative if 81 > 0 if h > 0.
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Consider again a linear model for the ToothGrowth data with an exponential transformation of dose with h
=1.

m <- Im(len ~ I(2°(-dose/1)), data = ToothGrowth)
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)
(Intercept) 35.14 1.555 22.60 1.942e-30
I(2"(-dose/1)) -33.61 2.988 -11.25 3.303e-16

d <- expand.grid(supp = c("0J", "VC"), dose = seq(0, 6, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + x1im(0,6) +
geom_line(aes(y = yhat), color = "black", data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",
color = "Supplement Type") + theme_minimal() +
theme (legend.position = "inside", legend.position.inside = c(0.8,0.2))
plot(p)
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lincon(m, a = c(1,1)) # intercept

estimate se lower upper tvalue df pvalue
(1,1),0 1.528 1.635 -1.745 4.8 0.9345 58 0.3539

Now suppose that we let the effect of dose “interact” with supplement type.

m <- Im(len ~ I(2"(-dose/1)) + supp + supp:I(2°(-dose/1)), data = ToothGrowth)
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)

(Intercept) 34.054 1.925 17.6872 1.375e-24
I(2"(-dose/1)) -27.569 3.700 -7.4519 6.199e-10
suppVC 2.169 2.723 0.7964 4.291e-01
I(27(-dose/1)) :suppVC -12.083 5.232 -2.3094 2.463e-02

d <- expand.grid(supp = c("0J", "VC"), dose = seq(0, 6, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + x1im(0,6) +
geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",
color = "Supplement Type") + theme_minimal() +
theme (legend.position = "inside", legend.position.inside = ¢(0.8,0.2))
plot(p)
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This model can be written as
E(Y;) = o+ fr27"/" + Bad; + Bsd;27"/",

where d; = 1 if the supplement type is VC, and d; = 0 otherwise, and h = 1. We can also write this model
case-wise as

B(Y;) = Bo + 127/ P, if the supplement type of the i-th observation is OJ,
’ Bo + B2 + (B1 + (3)2-%/", if the supplement type of the i-th observation is VC,

or
B(Y;) = Bo + 127/, if the supplement type of the i-th observation is OJ,
Yo 4+ 712~%/" if the supplement type of the i-th observation is VC,

where vg = [y + B2 and v1 = 51 + P3. We can make inferences for the intercepts and asymptotes for each
supplement type using lincon.

lincon(m, a = c(1,1,0,0)) # b0 + bl = intercept for OJ

estimate se lower upper tvalue df pvalue
(1,1,0,0),0 6.485 2.024 2.429 10.54 3.203 56 0.002243

lincon(m, a = c(1,1,1,1)) # g0 + g1 = b0 + b2 + bl + b3 = intercept for VC

estimate se lower upper tvalue df pvalue
(1,1,1,1),0 -3.429 2.024 -7.485 0.6261 -1.694 56 0.09582

lincon(m, a = c(1,0,1,0)) # g0 = b0 + b2 = asymptote for VC

estimate se lower upper tvalue df pvalue
(1,0,1,0),0 36.22 1.925 32.37 40.08 18.81 56 7.07e-26

10



We can also obtain (approximate) inferences using contrast.

contrast(m, a = list(dose = 0, supp = c("0J","VC")),
cname = c("0J intercept","VC intercept"))

estimate se lower upper tvalue df pvalue
0J intercept 6.485 2.024 2.429 10.5401 3.203 56 0.002243
VC intercept -3.429 2.024 -7.485 0.6261 -1.694 56 0.095824
contrast(m, a = list(dose = 100, supp = c("0J","VC")),
cname = c("0J asymptote","VC asymptote"))

estimate se lower upper tvalue df pvalue
0J asymptote 34.05 1.925 30.20 37.91 17.69 56 1.375e-24
VC asymptote 36.22 1.925 32.37 40.08 18.81 56 7.070e-26

But wouldn’t it make sense to have something like the following?

B(Y;) = Bo + f12-%/mos if the supplement type of the i-th observation is OJ,
’ Bo + B12-%i/Mve if the supplement type of the i-th observation is VC,

because at x = 0 and as * — oo there should be no difference in the supplement type, but there might be a
difference in how “fast” the expected response increases with dose. But unless we know hojy and hyc, this
model would be nonlinear (i.e., the model is not linear if hoy and hyc are unknown parameters as opposed
to known values).
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