
Friday, February 7

The Von Bertalanffy Growth Model
Consider the data frame walleye from the package alr4.
library(alr4)
head(walleye)

age length period periodf
1 1 215.3 1 pre-1991
2 1 193.3 1 pre-1991
3 1 202.6 1 pre-1991
4 1 201.5 1 pre-1991
5 1 232.0 1 pre-1991
6 1 191.0 1 pre-1991

The period variable refers to three distinct management periods: pre 1990, 1991-1996, and 1997-2000. It
will be useful to explicitly define that as a categorical variable (i.e., a factor in R) with descriptive category
labels.
walleye$periodf <- factor(walleye$period, levels = c(1,2,3),

labels = c("pre-1991","1991-1996","1997-2000"))
head(walleye)

age length period periodf
1 1 215.3 1 pre-1991
2 1 193.3 1 pre-1991
3 1 202.6 1 pre-1991
4 1 201.5 1 pre-1991
5 1 232.0 1 pre-1991
6 1 191.0 1 pre-1991

Let’s visualize the data.
p <- ggplot(walleye, aes(y = length, x = age)) + facet_wrap(~ periodf) +

theme_minimal() + geom_point(alpha = 0.25, size = 0.5) +
labs(x = "Age (years)", y = "Length (mm)",
title = "Length and Age of Walleye During Three Management Periods",
subtitle = "Butternut Lake, Wisconsin",
caption = "Source: Weisberg, S. (2014). Applied Linear Regression, 4th edition. Hoboken, NJ: Wiley.")

plot(p)

1

pre−1991 1991−1996 1997−2000

5 10 5 10 5 10

200

300

400

500

Age (years)

Le
ng

th
 (

m
m

)
Butternut Lake, Wisconsin

Length and Age of Walleye During Three Management Periods

Source: Weisberg, S. (2014). Applied Linear Regression, 4th edition. Hoboken, NJ: Wiley.

A common nonlinear regression model for these kind of data is the Von Bertalanffy growth model. This
model can be written many different ways. One that is similar to the exponential model we used earlier is

E(L) = α + (δ − α)2−a/γ ,

where L and a are length and age, respectively. The parameters can be interpreted as follows.

1. α is the asymptote of E(L) as a increases.
2. δ is the value of E(L) when a = 0.
3. γ is the value of a at which E(L) is half way between δ and α.

It is worth noting that this is not the parameterization of the model that is usually used in fisheries research.
The parameterization I have used here is more closely related to the exponential model we considered for the
ToothGrowth data.

Consider first a model in which there are no differences in the function between management periods. The
starting values were obtained by “eyeballing” the plot.
m <- nls(length ~ alpha + (delta - alpha) * 2ˆ(-age / gamma),

data = walleye, start = list(alpha = 500, delta = 200, gamma = 5))
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alpha 487.724 4.7688 102.27 0.00e+00 478.878 497.394
delta 140.729 2.0780 67.72 0.00e+00 136.654 144.732
gamma 3.424 0.1021 33.54 1.46e-211 3.236 3.632

Now suppose we want to allow the α and γ parameters to vary over management periods, but not δ. The

2

model we want could be written case-wise as

E(Li) =


α1 + (δ − α1)2−ai/γ1 , if the i-th observation is from the first period,

α2 + (δ − α2)2−ai/γ2 , if the i-th observation is from the second period,

α3 + (δ − α3)2−ai/γ3 , if the i-th observation is from the third period.

Perhaps the easiest way to specify this model is to use the case_when function from the dplyr package.
library(dplyr)
m <- nls(length ~ case_when(

periodf == "pre-1991" ~ alpha1 + (delta - alpha1) * 2ˆ(-age / gamma1),
periodf == "1991-1996" ~ alpha2 + (delta - alpha2) * 2ˆ(-age / gamma2),
periodf == "1997-2000" ~ alpha3 + (delta - alpha3) * 2ˆ(-age / gamma3)
), start = list(alpha1 = 500, alpha2 = 500, alpha3 = 500,

delta = 200, gamma1 = 5, gamma2 = 5, gamma3 = 5), data = walleye)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alpha1 461.912 4.82053 95.82 0.000e+00 453.119 471.429
alpha2 475.839 6.30129 75.51 0.000e+00 464.110 489.135
alpha3 516.907 7.76416 66.58 0.000e+00 502.581 532.897
delta 132.667 2.22347 59.67 0.000e+00 128.307 136.939
gamma1 2.574 0.08383 30.70 1.299e-181 2.423 2.740
gamma2 3.194 0.12046 26.51 3.747e-140 2.971 3.448
gamma3 4.095 0.15206 26.93 4.080e-144 3.817 4.410

d <- expand.grid(age = seq(0, 11, length = 100),
periodf = unique(walleye$periodf))

d$yhat <- predict(m, newdata = d)

p <- ggplot(walleye, aes(y = length, x = age)) + facet_wrap(~ periodf) +
theme_minimal() + geom_point(alpha = 0.25, size = 0.5) +
geom_line(aes(y = yhat), data = d) +
labs(x = "Age (years)", y = "Length (mm)",
title = "Length and Age of Walleye During Three Management Periods",
subtitle = "Butternut Lake, Wisconsin",
caption = "Source: Weisberg, S. (2014). Applied Linear Regression, 4th edition. Hoboken, NJ: Wiley.")

plot(p)

3

pre−1991 1991−1996 1997−2000

0 5 10 0 5 10 0 5 10

200

300

400

500

Age (years)

Le
ng

th
 (

m
m

)
Butternut Lake, Wisconsin

Length and Age of Walleye During Three Management Periods

Source: Weisberg, S. (2014). Applied Linear Regression, 4th edition. Hoboken, NJ: Wiley.

Here summary and confint provide inferences for each parameter in each period, but do not provide inferences
about the differences in the parameters between periods. But we can use lincon to do this. Suppose we
wanted to compare the second and third periods with the first.
library(trtools) # for lincon
lincon(m, a = c(-1,1,0,0,0,0,0)) # alpha2 - alpha1

estimate se lower upper tvalue df pvalue
(-1,1,0,0,0,0,0),0 13.93 6.758 0.675 27.18 2.061 3191 0.03942

lincon(m, a = c(-1,0,1,0,0,0,0)) # alpha3 - alpha1

estimate se lower upper tvalue df pvalue
(-1,0,1,0,0,0,0),0 54.99 8.449 38.43 71.56 6.509 3191 8.75e-11

lincon(m, a = c(0,0,0,0,-1,1,0)) # gamma2 - gamma1

estimate se lower upper tvalue df pvalue
(0,0,0,0,-1,1,0),0 0.6199 0.1061 0.4118 0.8281 5.84 3191 5.736e-09

lincon(m, a = c(0,0,0,0,-1,0,1)) # gamma3 - gamma1

estimate se lower upper tvalue df pvalue
(0,0,0,0,-1,0,1),0 1.521 0.145 1.237 1.805 10.49 3191 2.372e-25

Sometimes it is helpful to write the model as a function to keep the code tidy. We can program the function

f(a) = α + (δ − α)2−a/γ

as follows.

4

vbf <- function(age, alpha, delta, gamma) {
alpha + (delta - alpha) * 2ˆ(-age / gamma)

}

Now we can use vbf in nls.
m <- nls(length ~ case_when(

periodf == "pre-1991" ~ vbf(age, alpha1, delta, gamma1),
periodf == "1991-1996" ~ vbf(age, alpha2, delta, gamma2),
periodf == "1997-2000" ~ vbf(age, alpha3, delta, gamma3)
), start = list(alpha1 = 500, alpha2 = 500, alpha3 = 500,

delta = 200, gamma1 = 5, gamma2 = 5, gamma3 = 5), data = walleye)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
alpha1 461.912 4.82053 95.82 0.000e+00 453.119 471.429
alpha2 475.839 6.30129 75.51 0.000e+00 464.110 489.135
alpha3 516.907 7.76416 66.58 0.000e+00 502.581 532.897
delta 132.667 2.22347 59.67 0.000e+00 128.307 136.939
gamma1 2.574 0.08383 30.70 1.299e-181 2.423 2.740
gamma2 3.194 0.12046 26.51 3.747e-140 2.971 3.448
gamma3 4.095 0.15206 26.93 4.080e-144 3.817 4.410

Segmented Regression as a Linear Model
Consider data from a study of the effect of attractant age on attracting fire ants.
library(trtools) # for fireants data
p <- ggplot(fireants, aes(x = day, y = count, color = group)) +

geom_point(alpha = 0.5) + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.8)) +
labs(x = "Age of Attractant (Days)", y = "Number of Ants Trapped",
color = "Group")

plot(p)

5

0

20

40

60

0 20 40 60
Age of Attractant (Days)

N
um

be
r

of
 A

nt
s

Tr
ap

pe
d

Group

Control

Treatment

Consider first this model for only the treatment group:

E(Yi) = β0 + β1xi + β21(xi < δ)(xi − δ),

where Yi and xi are the fire ant count and age of attractant, respectively, and 1 is an indicator function
defined as

1(xi < δ) =
{

1, if xi < δ,

0, if xi ≥ δ.

In general, an indicator function is a function such that

1(statement) =
{

1, if the statement is true,

0, if the statement is false.

Writing the model case-wise for xi < δ versus xi ≥ δ we have

E(Yi) =
{

β0 − β2δ + (β1 + β2)xi, if xi < δ,
β0 + β1xi, if xi ≥ δ.

This is sometimes called segmented, piece-wise, or broken-stick regression. It is also a special case of a spline.
The δ is called a “knot” of the spline. If the knot is known then this is a linear model.
treated <- subset(fireants, group == "Treatment")
m <- lm(count ~ day + I((day < 40)*(day - 40)), data = treated)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.62723 3.74415 3.1054 2.213e-03
day -0.02574 0.07898 -0.3259 7.449e-01
I((day < 40) * (day - 40)) -1.00914 0.10389 -9.7138 3.798e-18

6

https://en.wikipedia.org/wiki/Indicator_function

Note that we can write the indicator function 1(xi < 40) as (day < 40) in R.
d <- expand.grid(day = seq(0, 60, length = 100), group = "Treatment")
d$yhat <- predict(m, newdata = d)
p <- p + geom_line(aes(y = yhat), data = d)
plot(p)

0

20

40

60

0 20 40 60
Age of Attractant (Days)

N
um

be
r

of
 A

nt
s

Tr
ap

pe
d

Group

Control

Treatment

Now it would be useful to extend the model to include the control group, but subject to a couple of constraints:

1. The relationship between expected count and age for the control group should not have a break (because
there is no attractant to wear off).

2. After 40 days the relationship between expected count and age should be identical for the control and
treatment groups (because the attractant has worn off).

Here’s a model that will accomplish that:

E(Yi) = β0 + β1xi + β21(xi < δ)(xi − δ)gi,

where

gi =
{

1, if the i-th observation is from the treatment group,

0, otherwise,

so that the model can be written as

E(Yi) =
{

β0 − β2δ + (β1 + β2)xi, if the i-th observation is from the treatmnt group and xi < δ,

β0 + β1xi, otherwise.

m <- lm(count ~ day + I((day < 40)*(day - 40)*(group == "Treatment")),
data = fireants)

7

d <- expand.grid(day = seq(0, 60, length = 100),
group = c("Control","Treatment"))

d$yhat <- predict(m, newdata = d)

p <- ggplot(fireants, aes(x = day, y = count, color = group)) +
geom_point(alpha = 0.5) + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.8)) +
labs(x = "Age of Attractant (Days)",
y = "Number of Ants Trapped", color = "Group") +

geom_line(aes(y = yhat), data = d)
plot(p)

0

20

40

60

0 20 40 60
Age of Attractant (Days)

N
um

be
r

of
 A

nt
s

Tr
ap

pe
d

Group

Control

Treatment

Now we can make some inferences.
expected counts at day 0
contrast(m, a = list(group = c("Control","Treatment"), day = 0),

cnames = c("Control","Treatment"))

estimate se lower upper tvalue df pvalue
Control 9.819 0.5982 8.642 11.00 16.41 357 1.665e-45
Treatment 52.211 0.6770 50.880 53.54 77.12 357 1.145e-224

expected counts at day 40
contrast(m, a = list(group = c("Control","Treatment"), day = 40),

cnames = c("Control","Treatment"))

estimate se lower upper tvalue df pvalue
Control 10.18 0.2573 9.671 10.68 39.56 357 1.523e-132

8

Treatment 10.18 0.2573 9.671 10.68 39.56 357 1.523e-132

slopes before day 40
contrast(m,

a = list(group = c("Control","Treatment"), day = 1),
b = list(group = c("Control","Treatment"), day = 0),
cnames = c("Control","Treatment"))

estimate se lower upper tvalue df pvalue
Control 0.008954 0.01509 -0.02072 0.03863 0.5935 357 5.532e-01
Treatment -1.050865 0.01926 -1.08873 -1.01299 -54.5726 357 2.658e-175

slopes after day 40
contrast(m,

a = list(group = c("Control","Treatment"), day = 41),
b = list(group = c("Control","Treatment"), day = 40),
cnames = c("Control","Treatment"))

estimate se lower upper tvalue df pvalue
Control 0.008954 0.01509 -0.02072 0.03863 0.5935 357 0.5532
Treatment 0.008954 0.01509 -0.02072 0.03863 0.5935 357 0.5532

difference in expected counts at day 20
contrast(m,

a = list(group = "Treatment", day = 20),
b = list(group = "Control", day = 20))

estimate se lower upper tvalue df pvalue
21.2 0.4602 20.29 22.1 46.05 357 2.908e-152

We could go one step further by assuming that for the control group and after the knot the expected count is
constant. This would require us to drop the term β1xi.
m <- lm(count ~ I((day < 40) * (day - 40) *

(group == "Treatment")), data = fireants)

d <- expand.grid(day = seq(0, 60, length = 100),
group = c("Control","Treatment"))

d$yhat <- predict(m, newdata = d)

p <- ggplot(fireants, aes(x = day, y = count, color = group)) +
geom_point(alpha = 0.5) + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.8)) +
labs(x = "Age of Attractant (Days)",

y = "Number of Ants Trapped", color = "Group") +
geom_line(aes(y = yhat), data = d)

plot(p)

9

0

20

40

60

0 20 40 60
Age of Attractant (Days)

N
um

be
r

of
 A

nt
s

Tr
ap

pe
d

Group

Control

Treatment

Now consider the following inferences.
slopes before day 40
contrast(m,

a = list(group = c("Control","Treatment"), day = 1),
b = list(group = c("Control","Treatment"), day = 0),
cnames = c("Control","Treatment"))

estimate se lower upper tvalue df pvalue
Control 0.000 0.0000 0.00 0.000 NaN 358 NaN
Treatment -1.052 0.0191 -1.09 -1.015 -55.08 358 7.001e-177

slopes after day 40
contrast(m,

a = list(group = c("Control","Treatment"), day = 41),
b = list(group = c("Control","Treatment"), day = 40),
cnames = c("Control","Treatment")) # slopes after day 40

estimate se lower upper tvalue df pvalue
Control 0 0 0 0 NaN 358 NaN
Treatment 0 0 0 0 NaN 358 NaN

Segmented Regression as a Nonlinear Model
If the knot δ is known then the model is linear. We can write

E(Yi) = β0 + β1xi + β21(xi < δ)(xi − δ)gi

as
E(Yi) = β0 + β1xi1 + β2xi2,

10

where xi1 = xi (day) and xi2 = 1(xi < δ)(xi − δ)gi, provided we know δ. But what if δ is unknown and is to
be estimated? Then we have a nonlinear model.

Let’s start estimating a linear model with nls by guessing the value of δ. This will give us some good starting
values.
m <- nls(count ~ b0 + b1 * day + b2 * (day < 40) * (day - 40) *

(group == "Treatment"), data = fireants,
start = list(b0 = 0, b1 = 1, b2 = 1))

cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
b0 9.818633 0.59822 16.4131 1.665e-45 8.64216 10.99511
b1 0.008954 0.01509 0.5935 5.532e-01 -0.02072 0.03863
b2 -1.059819 0.02301 -46.0541 2.908e-152 -1.10508 -1.01456

Now consider a model where the knot (δ) is a parameter, using the estimate from the linear model as starting
values.
m <- nls(count ~ b0 + b1 * day + b2 * (day < delta) * (day - delta) *

(group == "Treatment"), data = fireants,
start = list(b0 = 10, b1 = 0, b2 = -1, delta = 40))

cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
b0 9.807069 0.60056 16.3298 3.885e-45 8.62598 10.98816
b1 0.008604 0.01516 0.5674 5.708e-01 -0.02122 0.03843
b2 -1.052444 0.03597 -29.2590 9.772e-97 -1.12822 -0.98318
delta 40.200079 0.75454 53.2776 1.061e-171 38.60885 41.69578

We can use lincon provided that the quantity of interest is a linear combination of parameters. For example,
recall that the model can be written as

E(Yi) =
{

β0 − β2δ + (β1 + β2)xi, if xi < δ and treatment,
β0 + β1xi, otherwise,

so the slope before the knot for the treatment group is β1 + β2. This can be written as

ℓ = a0β0 + a1β1 + a2β2 + a3δ + b

where a0 = 0, a1 = 1, a2 = 1, a3 = 0, and b = 0.
slope before knot for treatment group
lincon(m, a = c(0, 1, 1, 0))

estimate se lower upper tvalue df pvalue
(0,1,1,0),0 -1.044 0.03262 -1.108 -0.9797 -32 356 8.718e-107

Bent Cable Regression
The data frame children in the package npregfast contains 2500 observations of the age and height of
children.
library(ggplot2)
library(npregfast)
p <- ggplot(children, aes(x = age, y = height, color = sex)) +

geom_point(alpha = 0.25) + theme_minimal() +
labs(x = "Age (years)", y = "Height (cm)", color = "Gender") +
theme(legend.position = "inside", legend.position.inside = c(0.9,0.2))

plot(p)

11

100

125

150

175

5 10 15
Age (years)

H
ei

gh
t (

cm
)

Gender

female

male

The “bent cable” regression model can be used as kind of crude growth model for these data. It can be
viewed as a generalization of the segmented regression model where rather than having two lines meet at a
sharp angle, one line gradually transitions into the other by attaching them by what looks like a bent cable.
The figure below shows a bent cable model.

12

δ − γ δ δ + γ
x

E
(Y

)

The grey lines show a segmented regression model while the solid curve shows a bent cable model. Essentially
there are two lines: one line to the left of δ − γ and one line to the right of δ + γ. And between the two lines
(i.e., between δ − γ and δ + γ) is a quadratic polynomial that joins the two lines in such a way that the whole
piece-wise function is smooth. The parameter δ represents the point at which the two lines would meet if
there was no bend, and γ is the half of the distance between the points δ − γ and δ + γ. As γ gets closer to
zero this function approaches a segmented regression model (as shown by the grey lines).

The bent cable regression model can be written as

E(Y) = β0 + β1x + β2q(x, δ, γ),

where q(x, δ, γ) is a function defined as

q(x, δ, γ) = (x − δ + γ)2

4γ
1(δ − γ ≤ x ≤ δ + γ) + 1(x > δ + γ)(x − δ).

This can be written case-wise as

E(Y) =


β0 + β1x, if x < δ − γ,

β0 + β1x + β2
(xi−δ+γ)2

4γ , if δ − γ ≤ x ≤ δ + γ,

β0 − δβ2 + (β1 + β2)x, if x > δ + γ.

So when x < δ − γ we have a line with intercept β0 and slope β1, and after x > δ + γ we have another line
with intercept β0 − δβ2 and slope β1 + β2. Between δ − γ and δ + γ is what is basically a quadratic regression
model. And all three functions are constrained so that they form one smooth and continuous function.

Given the complexity of the function q(x, δ, γ), it is useful to program it.

13

q <- function(x, delta, gamma) {
(x - delta + gamma)ˆ2 / (4 * gamma) *

(delta - gamma <= x & x <= delta + gamma) +
(x > (delta + gamma)) * (x - delta)

}

First I will estimate a linear model with crude guesses of δ and γ.
m <- nls(height ~ b0 + b1 * age + b2 * q(age, 15, 1), data = children,

start = list(b0 = 0, b1 = 0, b2 = 0))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 84.886 0.80646 105.26 0.00e+00
b1 5.320 0.06612 80.46 0.00e+00
b2 -4.172 0.21769 -19.16 1.78e-76

Next we can use the estimates of β0, β1, and β2 as starting values in a nonlinear model.
m <- nls(height ~ b0 + b1 * age + b2 * q(age, delta, gamma), data = children,

start = list(b0 = 85, b1 = 5.3, b2 = -5, delta = 15, gamma = 1))
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0 85.898 0.95916 89.555 0.000e+00
b1 5.217 0.08468 61.613 0.000e+00
b2 -5.239 0.68653 -7.631 3.297e-14
delta 15.662 0.27560 56.828 0.000e+00
gamma 1.483 0.51344 2.889 3.897e-03

The slope after the bend is β1 + β2, but if β2 = −β1 then the slope after the bend would be zero. This model
would then be

E(Y) = β0 + β1x − β1q(x, δ, γ).

Let’s consider using this model but now with a separate growth curve for males and females.
m <- nls(height ~ case_when(

sex == "male" ~ b0m + b1m*age - b1m*q(age, deltam, gammam),
sex == "female" ~ b0f + b1f*age - b1f*q(age, deltaf, gammaf)),
data = children, start = list(b0m = 86, b0f = 86, b1m = 5, b1f = 5,
deltam = 15, deltaf = 15, gammam = 1.5, gammaf = 1.5))

summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
b0m 79.5271 1.04815 75.874 0.000e+00
b0f 86.2213 1.65345 52.146 0.000e+00
b1m 5.6137 0.08511 65.959 0.000e+00
b1f 5.4542 0.16443 33.171 3.665e-200
deltam 16.3983 0.12218 134.209 0.000e+00
deltaf 14.1533 0.14833 95.416 0.000e+00
gammam 0.8673 0.49692 1.745 8.105e-02
gammaf 1.9069 0.43727 4.361 1.348e-05

d <- expand.grid(sex = c("male","female"), age = seq(5, 20, length = 200))
d$yhat <- predict(m, newdata = d)

p <- ggplot(children, aes(x = age, y = height, color = sex)) +
geom_point(alpha = 0.125) + theme_minimal() +

14

geom_line(aes(y = yhat), data = d) +
labs(x = "Age (years)", y = "Height (cm)", color = "Gender") +
theme(legend.position = "inside", legend.position.inside = c(0.9,0.2))

plot(p)

100

125

150

175

5 10 15 20
Age (years)

H
ei

gh
t (

cm
)

Gender

female

male

15

	The Von Bertalanffy Growth Model
	Segmented Regression as a Linear Model
	Segmented Regression as a Nonlinear Model
	Bent Cable Regression

