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Marginal Means
A marginal mean is effectively an average of expected responses. The emmeans package is particularly useful
for making inferences about marginal means. It can also be done using contrast but it is not a documented
feature.
library(trtools)
library(emmeans)

Warning: The emmeans package contains a function called contrast which is not the same as the function
of the same name in the trtools package, resulting in a namespace conflict if both packages are loaded. If
you have both packages loaded in a given session, use trtools::contrast and emmeans::contrast to refer
to a given function.

Example: Consider again the data from the platy study.
m <- lm(Percentage ~ Pair, data = Sleuth3::case0602)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.406 3.864 14.5965 5.208e-24
PairPair2 4.479 5.657 0.7919 4.308e-01
PairPair3 6.023 5.384 1.1187 2.667e-01
PairPair4 10.594 5.657 1.8727 6.485e-02
PairPair5 7.805 6.441 1.2118 2.292e-01
PairPair6 6.929 5.657 1.2250 2.243e-01

We see that there are indicator variables for male pairs 2-6. The model can be written as

E(Yi) =



β0, if the i-th observation was from the first male pair,
β0 + β1, if the i-th observation was from the second male pair,
β0 + β2, if the i-th observation was from the third male pair,
β0 + β3, if the i-th observation was from the fourth male pair,
β0 + β4, if the i-th observation was from the fifth male pair,
β0 + β5, if the i-th observation was from the sixth male pair.

We can use contrast to estimate the expected response for each pair.
trtools::contrast(m, a = list(Pair = paste("Pair", 1:6, sep = "")),

cnames = paste("Pair", 1:6, sep = ""))

Note how I used a shortcut to specify the pairs.
paste("Pair", 1:6, sep = "")

[1] "Pair1" "Pair2" "Pair3" "Pair4" "Pair5" "Pair6"

This can also be done using the emmeans function from the package emmeans.
library(emmeans)
emmeans(m, ~ Pair)
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Pair emmean SE df lower.CL upper.CL
Pair1 56.4 3.86 78 48.7 64.1
Pair2 60.9 4.13 78 52.7 69.1
Pair3 62.4 3.75 78 55.0 69.9
Pair4 67.0 4.13 78 58.8 75.2
Pair5 64.2 5.15 78 54.0 74.5
Pair6 63.3 4.13 78 55.1 71.6

Confidence level used: 0.95

Denote the six expected responses (one for each pair) as

µ1 = β0,

µ2 = β0 + β1,

µ3 = β0 + β2,

µ4 = β0 + β3,

µ5 = β0 + β4,

µ6 = β0 + β5.

One marginal mean would be the average expected response across the pairs. This could be written as

µ = µ1 + µ2 + µ3 + µ4 + µ5 + µ6

6 = β0 + 1
6 β1 + 1

6 β2 + 1
6 β3 + 1

6 β4 + 1
6 β5.

We can estimate this quantity with lincon.
lincon(m, a = c(1,1/6,1/6,1/6,1/6,1/6))

estimate se lower upper tvalue df pvalue
(1,1/6,1/6,1/6,1/6,1/6),0 62.38 1.722 58.95 65.81 36.23 78 1.501e-50

We can also use emmeans.
emmeans(m, ~ 1)

1 emmean SE df lower.CL upper.CL
overall 62.4 1.72 78 59 65.8

Results are averaged over the levels of: Pair
Confidence level used: 0.95

Note that we can use the confidence interval to test the null hypothesis that µ = 50. For a test statistic and
p-value for this test we could write this as

µ = 50 ⇔ β0 + 1
6 β1 + 1

6 β2 + 1
6 β3 + 1

6 β4 + 1
6 β5 = 50 ⇔ β0 + 1

6 β1 + 1
6 β2 + 1

6 β3 + 1
6 β4 + 1

6 β5 − 50 = 0.

Here is how we can do that with lincon.
lincon(m, a = c(1,1/6,1/6,1/6,1/6,1/6), b = -50)

estimate se lower upper tvalue df pvalue
(1,1/6,1/6,1/6,1/6,1/6),-50 12.38 1.722 8.95 15.81 7.189 78 3.439e-10

Here is how we do it with emmeans.
emmeans(m, ~1, offset = -50, infer = TRUE)

1 emmean SE df lower.CL upper.CL t.ratio p.value
overall 12.4 1.72 78 8.95 15.8 7.189 <0.0001
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Results are averaged over the levels of: Pair
Confidence level used: 0.95
emmeans(m, ~1, null = 50, infer = TRUE)

1 emmean SE df lower.CL upper.CL null t.ratio p.value
overall 62.4 1.72 78 59 65.8 50 7.189 <0.0001

Results are averaged over the levels of: Pair
Confidence level used: 0.95

By not listing an explanatory variable on the right-hand side of ~, we are asking that emmeans average over
that explanatory variable. Also note that the argument infer = TRUE makes the emmeans function provide
both confidence intervals as well as tests.

Note: If we just want to know whether or not we would reject the null hypothesis that µ = 50 we can also
just look at the confidence interval for µ.

Example: Consider the following data from a survey of water fleas.
library(ggplot2)
p <- ggplot(daphniastrat, aes(x = layer, y = count)) +

geom_dotplot(binaxis = "y", stackdir = "center") +
labs(x = "Layer", y = "Number of Daphnia") + theme_minimal()

plot(p)
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We might model these data using the following linear model.
m <- lm(count ~ layer, data = daphniastrat)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.50 0.7271 26.820 4.727e-28
layerthermocline -8.20 1.2593 -6.512 7.293e-08
layerhypolimnion -17.77 1.1106 -15.997 1.784e-19
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So our model can be written as

E(Yi) =


β0, if the i-th observation is from the epilimnion layer,
β0 + β1, if the i-th observation is from the thermocline layer,
β0 + β2, if the i-th observation is from the hypolimnion layer.

Let µe, µt, and µh denote the expected number of daphnia per liter for the epilimnion, thermocline, and
hypolimnion layers, respectively (i.e., the density of daphnia in each layer). So

µe = β0, µt = β0 + β1, µh = β0 + β2.

It is known that the volumes of the epilimnion, thermocline, and hypolimnion layers are 100, 200, and 400
kL, respectively. The density for the entire lake is then

µ = 100
700 µe + 200

700 µt + 400
700 µh = β0 + 2

7β1 + 4
7β2.

We can estimate this with lincon or emmeans using the weights option.
lincon(m, a = c(1, 2/7, 4/7))

estimate se lower upper tvalue df pvalue
(1,2/7,4/7),0 7.005 0.572 5.85 8.159 12.25 42 1.907e-15
emmeans(m, ~ 1, weights = c(1/7, 2/7, 4/7))

1 emmean SE df lower.CL upper.CL
overall 7 0.572 42 5.85 8.16

Results are averaged over the levels of: layer
Confidence level used: 0.95

Note that when using emmeans it is important to put the weights in the correct order. We can verify the
order using level (if the variable is a factor) or by using weights = "slow.levels".
levels(daphniastrat$layer)

[1] "epilimnion" "thermocline" "hypolimnion"
emmeans(m, ~ 1, weights = "show.levels")

emmeans are obtained by averaging over these factor combinations

layer
1 epilimnion
2 thermocline
3 hypolimnion

We can estimate the expected number of daphnia per liter for each layer.
emmeans(m, ~ layer)

layer emmean SE df lower.CL upper.CL
epilimnion 19.50 0.727 42 18.033 20.97
thermocline 11.30 1.030 42 9.225 13.38
hypolimnion 1.73 0.840 42 0.039 3.43

Confidence level used: 0.95
trtools::contrast(m, a = list(layer = c("epilimnion","thermocline","hypolimnion")),

cnames = c("epilimnion","thermocline","hypolimnion"))
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estimate se lower upper tvalue df pvalue
epilimnion 19.500 0.7271 18.03274 20.967 26.820 42 4.727e-28
thermocline 11.300 1.0282 9.22498 13.375 10.990 42 6.221e-14
hypolimnion 1.733 0.8395 0.03909 3.428 2.065 42 4.517e-02

We can also do inferences concerning the differences between pairs of layers.
pairs(emmeans(m, ~ layer), adjust = "none")

contrast estimate SE df t.ratio p.value
epilimnion - thermocline 8.20 1.26 42 6.512 <0.0001
epilimnion - hypolimnion 17.77 1.11 42 15.997 <0.0001
thermocline - hypolimnion 9.57 1.33 42 7.207 <0.0001

trtools::contrast(m,
a = list(layer = c("epilimnion","epilimnion","thermocline")),
b = list(layer = c("thermocline","hypolimnion","hypolimnion")),
cnames = c("E-T","E-H", "T-H"))

estimate se lower upper tvalue df pvalue
E-T 8.200 1.259 5.659 10.74 6.512 42 7.293e-08
E-H 17.767 1.111 15.525 20.01 15.997 42 1.784e-19
T-H 9.567 1.327 6.888 12.25 7.207 42 7.363e-09

The adjust = "none" option for pairs specifies that no adjustment be made to confidence intervals or tests
for the family-wise Type I error rate.1

Something to note when using the weights argument with the emmeans function is that the weights that are
used must sum to one, and if they do not they will be normalized so that they do. For example, the following
provide the same result.
emmeans(m, ~ 1, weights = c(1/7, 2/7, 4/7))

1 emmean SE df lower.CL upper.CL
overall 7 0.572 42 5.85 8.16

Results are averaged over the levels of: layer
Confidence level used: 0.95
emmeans(m, ~ 1, weights = c(1, 2, 4)) # original weights multiplied by 7

1 emmean SE df lower.CL upper.CL
overall 7 0.572 42 5.85 8.16

Results are averaged over the levels of: layer
Confidence level used: 0.95

If you want to use weights that do not sum to one, you can use the contrast function from the emmeans
package (different from the function of the same name from trtools).

1The family-wise Type I error rate is the probability of making at least one Type I error. If it is desired that the family-wise
Type I error rate be no greater than α (default is 0.05), then some adjustment can be made. This adjustment is seen in the
p-values and confidence intervals. The most general method is to use adjust = "mvt". Some special cases are more widely known
such as Tukey (adjust = "tukey") and Bonferroni (adjust = "bonferroni"), but the adjustment based on the multivariate
t-distribution (adjust = "mvt") is the most general and accurate. Note that an adjustment will produce “simultaneous”
confidence intervals. A method of producing simultaneous confidence intervals has the property that the probability that all of
the confidence intervals will contain the quantities being estimated is equal to the specified confidence level (95% by default).
The multivariate t-distribution adjustment is perhaps not as well known, so a reference that you can cite is Edwards, D. &
Berry, J. T. (1987). The efficiency of simulation-based multiple comparisons. Biometrics, 43(4), 913–928.
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emmeans(m, ~1, weights = c(1/7, 2/7, 4/7))

1 emmean SE df lower.CL upper.CL
overall 7 0.572 42 5.85 8.16

Results are averaged over the levels of: layer
Confidence level used: 0.95
emmeans::contrast(emmeans(m, ~layer), method = list(layer = c(1/7, 2/7, 4/7)), infer = TRUE)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
layer 7 0.572 42 5.85 8.16 12.245 <0.0001

Confidence level used: 0.95

But suppose we wanted to estimate the number of daphnia in the lake (τ). It can be shown that this is

τ = 700000µ = 700000
( 1

7 µe + 2
7 µt + 4

7 µh

)
= 100000µe + 200000µt + 400000µh.

Note that there are 700kL in the lake, which is 700000L (which is the scale used for the observations). This
can be estimated as follows.
emmeans::contrast(emmeans(m, ~layer),

method = list(layer = 700000 * c(1/7, 2/7, 4/7)), infer = TRUE)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
layer 4903333 4e+05 42 4095230 5711437 12.245 <0.0001

Confidence level used: 0.95

Another approach is to use lincon but your weights/coefficients will be different since they are applied to β0,
β1, and β2. We have that

τ = 100000µe + 200000µt + 400000µh = 700000β0 + 200000β1 + 400000β2.

or
τ = 700000

(
β0 + 2

7 β1 + 4
7 β2

)
.

lincon(m, a = c(700000,200000,400000))

estimate se lower upper tvalue df pvalue
(7e+05,2e+05,4e+05),0 4903333 400431 4095230 5711437 12.25 42 1.907e-15
lincon(m, a = 700000 * c(1,2/7,4/7))

estimate se lower upper tvalue df pvalue
(7e+05,2e+05,4e+05),0 4903333 400431 4095230 5711437 12.25 42 1.907e-15

Marginal Means and “Main Effects”
Consider data from a randomized experiment with guinea pigs administered one of three doses of vitamin C
(0.5, 1, or 2 mg/day) via one of two supplement methods: orange juice (OJ) or ascorbic acid (VC).
p <- ggplot(ToothGrowth, aes(x = dose, y = len)) +

geom_point(alpha = 0.5) + facet_wrap(~supp) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length") + theme_minimal()

plot(p)
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Here we are going to model dose as a categorical variable so we need to coerce it to a factor. Perhaps the
safest approach is to create a new variable.
ToothGrowth$dosef <- factor(ToothGrowth$dose)

Note: Whether a variable is a numeric, a factor, or something else can be seen use str (for “structure”).
str(ToothGrowth)

'data.frame': 60 obs. of 4 variables:
$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
$ supp : Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
$ dose : num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
$ dosef: Factor w/ 3 levels "0.5","1","2": 1 1 1 1 1 1 1 1 1 1 ...

Notice that ggplot responds differently.
summary(ToothGrowth)

len supp dose dosef
Min. : 4.2 OJ:30 Min. :0.50 0.5:20
1st Qu.:13.1 VC:30 1st Qu.:0.50 1 :20
Median :19.2 Median :1.00 2 :20
Mean :18.8 Mean :1.17
3rd Qu.:25.3 3rd Qu.:2.00
Max. :33.9 Max. :2.00

p <- ggplot(ToothGrowth, aes(x = dosef, y = len)) +
geom_point(alpha = 0.5) + facet_wrap(~supp) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length") + theme_minimal()
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plot(p)
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Now consider the following linear model.
m <- lm(len ~ dosef + supp + dosef:supp, data = ToothGrowth)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.23 1.148 11.5208 3.603e-16
dosef1 9.47 1.624 5.8312 3.176e-07
dosef2 12.83 1.624 7.9002 1.430e-10
suppVC -5.25 1.624 -3.2327 2.092e-03
dosef1:suppVC -0.68 2.297 -0.2961 7.683e-01
dosef2:suppVC 5.33 2.297 2.3207 2.411e-02

The model is
E(Yi) = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5,

where

xi1 =
{

1, if dose is 1 mg/day,

0, otherwise,

xi2 =
{

1, if dose is 2 mg/day,

0, otherwise,

xi3 =
{

1, if supplement type is VC
0, otherwise,
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xi4 = xi1xi3 =
{

1, if dose is 1 mg/day and supplement type is VC,

0, otherwise,

xi5 = xi2xi3 =
{

1, if dose is 2 mg/day and supplement type is VC,

0, otherwise.

We can write this model case-wise.

E(Yi) =



β0, if dose is 0.5 mg/day and supplement type is OJ,

β0 + β1, if dose is 1 mg/day and supplement type is OJ,

β0 + β2, if dose is 2 mg/day and supplement type is OJ,

β0 + β3, if dose is 0.5 mg/day and supplement type is VC,

β0 + β1 + β3 + β4, if dose is 1 mg/day and supplement type is VC,

β0 + β2 + β3 + β5, if dose is 2 mg/day and supplement type is VC.

Note that if we omitted the interaction term so that the model formula is len ~ dosef + supp, then we
would have the model

E(Yi) = β0 + β1xi1 + β2xi2 + β3xi3,

which can be written case-wise as

E(Yi) =



β0, if dose is 0.5 mg/day and supplement type is OJ,

β0 + β1, if dose is 1 mg/day and supplement type is OJ,

β0 + β2, if dose is 2 mg/day and supplement type is OJ,

β0 + β3, if dose is 0.5 mg/day and supplement type is VC,

β0 + β1 + β3 if dose is 1 mg/day and supplement type is VC,

β0 + β2 + β3 if dose is 2 mg/day and supplement type is VC.

Here is a visualization of the data and the model with the interaction.
d <- expand.grid(dosef = levels(ToothGrowth$dosef), supp = levels(ToothGrowth$supp))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dosef, y = len, color = supp)) +
geom_point(alpha = 0.5) + theme_classic() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2)) +
geom_point(aes(y = yhat), size = 2, data = d) +
geom_line(aes(y = yhat, group = supp), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length", color = "Supplement Type")

plot(p)
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Consider again the model with the interaction so that

E(Yi) =



β0, if dose is 0.5 mg/day and supplement type is OJ,

β0 + β1, if dose is 1 mg/day and supplement type is OJ,

β0 + β2, if dose is 2 mg/day and supplement type is OJ,

β0 + β3, if dose is 0.5 mg/day and supplement type is VC,

β0 + β1 + β3 + β4, if dose is 1 mg/day and supplement type is VC,

β0 + β2 + β3 + β5, if dose is 2 mg/day and supplement type is VC.

The “cell means” are

µOJ,0.5 = β0, (1)
µOJ,1.0 = β0 + β1, (2)
µOJ,2.0 = β0 + β2, (3)
µVC,0.5 = β0 + β3, (4)
µVC,1.0 = β0 + β1 + β3 + β4, (5)
µVC,2.0 = β0 + β1 + β3 + β5. (6)

The “marginal means” for supplement type are

µOJ = µOJ,0.5 + µOJ,1.0 + µOJ,2.0

3 = β0 + 1
3β1 + 1

3β2,

and
µVC = µVC,0.5 + µVC,1.0 + µOJ,2.0

3 = β0 + 1
3β1 + 1

3β2 + β3 + 1
3β4 + 1

3β5.

We can estimate them using lincon.
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lincon(m, a = c(1,1/3,1/3,0,0,0))

estimate se lower upper tvalue df pvalue
(1,1/3,1/3,0,0,0),0 20.66 0.663 19.33 21.99 31.17 54 3.359e-36
lincon(m, a = c(1,1/3,1/3,1,1/3,1/3))

estimate se lower upper tvalue df pvalue
(1,1/3,1/3,1,1/3,1/3),0 16.96 0.663 15.63 18.29 25.59 54 7.306e-32

But we can also do it using emmeans.
emmeans(m, ~supp)

supp emmean SE df lower.CL upper.CL
OJ 20.7 0.663 54 19.3 22.0
VC 17.0 0.663 54 15.6 18.3

Results are averaged over the levels of: dosef
Confidence level used: 0.95

Now suppose we want to estimate the “main effect” which is

µOJ − µVC = µOJ,0.5 + µOJ,1.0 + µOJ,2.0

3 − µVC,0.5 + µVC,1.0 + µOJ,2.0

3 = −β3 − 1
3β4 − 1

3β5.

We can do this using lincon.
lincon(m, a = c(0,0,0,-1,-1/3,-1/3))

estimate se lower upper tvalue df pvalue
(0,0,0,-1,-1/3,-1/3),0 3.7 0.9376 1.82 5.58 3.946 54 0.0002312

But we can also use functions from the emmeans package.
pairs(emmeans(m, ~supp), infer = TRUE)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
OJ - VC 3.7 0.938 54 1.82 5.58 3.946 0.0002

Results are averaged over the levels of: dosef
Confidence level used: 0.95

The main effect of dose concerns differences among the marginal means of dose defined as µ0.5, µ1 and µ2
where

µ0.5 = µOJ,0.5 + µVC,0.5

2 , µ1 = µOJ,1 + µVC,1

2 , µ2 = µOJ,2 + µVC,2

2 .

emmeans(m, ~ dosef)

dosef emmean SE df lower.CL upper.CL
0.5 10.6 0.812 54 8.98 12.2
1 19.7 0.812 54 18.11 21.4
2 26.1 0.812 54 24.47 27.7

Results are averaged over the levels of: supp
Confidence level used: 0.95
pairs(emmeans(m, ~ dosef), adjust = "none")

contrast estimate SE df t.ratio p.value
dosef0.5 - dosef1 -9.13 1.15 54 -7.951 <0.0001
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dosef0.5 - dosef2 -15.49 1.15 54 -13.493 <0.0001
dosef1 - dosef2 -6.37 1.15 54 -5.543 <0.0001

Results are averaged over the levels of: supp

Main Effects in Anova Tables
In ANOVA tables the test of the “main effect” is the (joint) null hypothesis that all pairwise differences are
zero. For the variable dose the null hypothesis is µ0.5 = µ1 = µ2. This can be done using the test function.
test(pairs(emmeans(m, ~ dosef)), joint = TRUE)

df1 df2 F.ratio p.value note
2 54 92.000 <0.0001 d

d: df1 reduced due to linear dependence

This is the traditional main effect that is sometimes reported in an “ANOVA table” such as that produced by
Anova from the car package.
library(car)
m <- lm(len ~ dosef + supp + dosef:supp, data = ToothGrowth,

contrast = list(dosef = contr.sum, supp = contr.sum))
Anova(m, type = 3)

Anova Table (Type III tests)

Response: len
Sum Sq Df F value Pr(>F)

(Intercept) 21236 1 1610.39 < 2e-16 ***
dosef 2426 2 92.00 < 2e-16 ***
supp 205 1 15.57 0.00023 ***
dosef:supp 108 2 4.11 0.02186 *
Residuals 712 54
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The option contrast = list(dosef = contr.sum, supp = contr.sum) is necessary here for the Anova
function to do the correct calculations.2

The test of the main effect of supplement method was given by
pairs(emmeans(m, ~ supp), infer = TRUE)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
OJ - VC 3.7 0.938 54 1.82 5.58 3.946 0.0002

Results are averaged over the levels of: dosef
Confidence level used: 0.95

We do not need a joint test here since there are only two marginal means, but here it is anyway.
test(pairs(emmeans(m, ~ supp)), joint = TRUE)

df1 df2 F.ratio p.value
2I am demonstrating here what is sometimes called inferences based on Type III sums of squares. Another common approach

is to use what is called Type II sums of squares. This can be done with the Anova function with type = 2. For inferences based
on Type II sums of squares with the functions from the emmeans package an extra step is needed (email me for an example if
you really want to know how to do it).
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1 54 15.572 0.0002
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