
Wednesday, February 4

The Estimated Expected Response
Assuming the linear model

E(Y ) = β0 + β1x1 + β2x2 + · · · + βkxk,

the estimated expected response at specified values of the response variables is

Ê(Y ) = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂kxk,

where x1, x2, . . . , xk are specified values of the explanatory variables. Because Ê(Y ) is sometimes used for
predicting Y , we sometimes refer to it as the “predicted value” of Y and denote it as ŷ.

Note that an expected response is simply a linear combination of the form

ℓ = a0β0 + a1β1 + a2β2 + · · · + akβk + b,

where a0 = 1, a1 = x1, a2 = x2, . . . , ak = xk and b = 0.

Example: Consider the following model for the whiteside data.
m <- lm(Gas ~ Insul + Temp + Insul:Temp, data = MASS::whiteside) # note :: operator
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8538 0.13596 50.409 7.997e-46
InsulAfter -2.1300 0.18009 -11.827 2.316e-16
Temp -0.3932 0.02249 -17.487 1.976e-23
InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04

What is the estimated expected gas consumption at 0, 5, and 10 degrees C after insulation? Either lincon
or contrast can be used (although contrast is probably easier).
library(trtools)
lincon(m, a = c(1,1,0,0)) # After @ 0C

estimate se lower upper tvalue df pvalue
(1,1,0,0),0 4.724 0.1181 4.487 4.961 40 52 9.918e-41

lincon(m, a = c(1,1,5,5)) # After @ 5C

estimate se lower upper tvalue df pvalue
(1,1,5,5),0 3.334 0.06024 3.213 3.455 55.35 52 6.772e-48

lincon(m, a = c(1,1,10,10)) # After @ 10C

estimate se lower upper tvalue df pvalue
(1,1,10,10),0 1.945 0.14 1.664 2.225 13.89 52 3.869e-19

contrast(m, a = list(Insul = "After", Temp = c(0,5,10)),
cnames = c("After @ 0C","After @ 5C","After @ 10C"))

estimate se lower upper tvalue df pvalue
After @ 0C 4.724 0.11810 4.487 4.961 40.00 52 9.918e-41
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After @ 5C 3.334 0.06024 3.213 3.455 55.35 52 6.772e-48
After @ 10C 1.945 0.13996 1.664 2.225 13.89 52 3.869e-19

There are better approaches if we want more points.
d <- expand.grid(Temp = c(0,5,10), Insul = c("Before","After"))
d

Temp Insul
1 0 Before
2 5 Before
3 10 Before
4 0 After
5 5 After
6 10 After

predict(m, newdata = d)

1 2 3 4 5 6
6.854 4.888 2.921 4.724 3.334 1.945

predict(m, newdata = d, interval = "confidence")

fit lwr upr
1 6.854 6.581 7.127
2 4.888 4.760 5.016
3 2.921 2.676 3.167
4 4.724 4.487 4.961
5 3.334 3.213 3.455
6 1.945 1.664 2.225

cbind(d, predict(m, newdata = d, interval = "confidence"))

Temp Insul fit lwr upr
1 0 Before 6.854 6.581 7.127
2 5 Before 4.888 4.760 5.016
3 10 Before 2.921 2.676 3.167
4 0 After 4.724 4.487 4.961
5 5 After 3.334 3.213 3.455
6 10 After 1.945 1.664 2.225

Prediction and the Standard Error of Prediction
The estimated expected response Ê(Y ) can also be viewed as the predicted value of Y , justified by least
squares. The estimate of Y is then

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂kxk.

The (estimated) standard deviation of Y − Ŷ is the standard error of prediction, defined as

SE(Ŷ − Y ) =
√

SE(Ŷ )2 + σ2,

where σ2 is the variance of Y (note two sources of variability — that of Ŷ and that of Y ). The prediction
interval for Y is then

ŷ ± t

√
SE(Ŷ )2 + σ2.

Compare this with the confidence interval for Ê(Y ) which is

ŷ ± tSE(Ŷ ).
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Prediction intervals for Y are wider than confidence intervals for E(Y ).

Example: Prediction intervals for lm objects can also be obtained form predict.
predict(m, newdata = d, interval = "prediction")

fit lwr upr
1 6.854 6.151 7.557
2 4.888 4.227 5.548
3 2.921 2.228 3.614
4 4.724 4.034 5.414
5 3.334 2.675 3.994
6 1.945 1.238 2.651

Visualization of Confidence Intervals and Prediction Intervals
Example: Suppose we want to visualize the model for the whiteside data.

First consider a plot of the raw data.
p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas, color = Insul)) +

geom_point() + theme_minimal() +
labs(x = "Temperature (C)", y = "Gas Consumption", color = "Insulation")

plot(p)
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There are several ways we could show confidence intervals for the expected response or prediction intervals.
d <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, by = 1))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))
head(d)

Insul Temp fit lwr upr
1 Before -1 7.247 6.934 7.561
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2 After -1 5.002 4.724 5.280
3 Before 0 6.854 6.581 7.127
4 After 0 4.724 4.487 4.961
5 Before 1 6.461 6.227 6.694
6 After 1 4.446 4.247 4.644

p <- p + geom_line(aes(y = fit), data = d)
plot(p)
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p <- p + geom_errorbar(aes(y = NULL, ymin = lwr, ymax = upr), width = 0.25, data = d)
plot(p)
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Here’s another approach using confidence intervals for the expected response.
d <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas, color = Insul)) +
geom_point() + theme_minimal() +
labs(x = "Temperature (C)", y = "Gas Consumption", color = "Insulation") +
geom_line(aes(y = fit), data = d) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr, fill = Insul),

alpha = 0.25, color = NA, data = d, show.legend = FALSE)
plot(p)
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Same approach but now for prediction intervals.
d <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
d <- cbind(d, predict(m, newdata = d, interval = "prediction"))

p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas, color = Insul)) +
geom_point() + theme_minimal() +
labs(x = "Temperature (C)", y = "Gas Consumption", color = "Insulation") +
geom_line(aes(y = fit), data = d) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr, fill = Insul),

alpha = 0.25, color = NA, data = d, show.legend = FALSE)
plot(p)

6



2

4

6

8

0 4 8
Temperature (C)

G
as

 C
on

su
m

pt
io

n

Insulation

Before

After

We can put them together, and move the legend.
d1 <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
d1 <- cbind(d1, predict(m, newdata = d1, interval = "confidence"))

d2 <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
d2 <- cbind(d2, predict(m, newdata = d2, interval = "prediction"))

p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas, color = Insul)) +
geom_point() + theme_minimal() +
labs(x = "Temperature (C)", y = "Gas Consumption", color = "Insulation") +
geom_line(aes(y = fit), data = d1) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr, fill = Insul),

alpha = 0.25, color = NA, data = d1, show.legend = FALSE) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr, fill = Insul),

alpha = 0.25, color = NA, data = d2, show.legend = FALSE) +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.8))

plot(p)
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Black and white for the color printer challenged.
d1 <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
d1 <- cbind(d1, predict(m, newdata = d1, interval = "confidence"))

d2 <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
d2 <- cbind(d2, predict(m, newdata = d2, interval = "prediction"))

p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas)) +
geom_point(size = 1) + theme_minimal() + facet_wrap(~ Insul) +
labs(x = "Temperature (C)", y = "Gas Consumption") +
geom_line(aes(y = fit), data = d1) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr), fill = "black",

alpha = 0.25, color = NA, data = d1, show.legend = FALSE) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr), fill = "black",

alpha = 0.25, color = NA, data = d2, show.legend = FALSE)
plot(p)
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Example: Consider visualizing several models for the trees data. How do we deal with having two
quantitative explanatory variables?
m <- lm(Volume ~ Height + Girth, data = trees)

d <- expand.grid(Height = seq(63, 87, length = 100), Girth = c(8, 13, 18))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(d, aes(x = Height, y = fit)) + theme_minimal() +
geom_line() + facet_wrap(~ Girth) +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +
labs(x = "Height (ft)", y = "Expected Volume (cubic feet)")

plot(p)
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Now suppose there is a third categorical variable Species.
set.seed(123)
trees$Species <- sample(c("A","B"), 31, TRUE)
head(trees)

Girth Height Volume Species
1 8.3 70 10.3 A
2 8.6 65 10.3 A
3 8.8 63 10.2 A
4 10.5 72 16.4 B
5 10.7 81 18.8 A
6 10.8 83 19.7 B

m <- lm(Volume ~ Height + Girth + Height:Species + Girth:Species, data = trees)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -58.67683 9.12536 -6.4301 8.195e-07
Height 0.37798 0.14777 2.5579 1.670e-02
Girth 4.55074 0.34654 13.1320 5.542e-13
Height:SpeciesB -0.07239 0.09906 -0.7307 4.715e-01
Girth:SpeciesB 0.39908 0.56071 0.7117 4.830e-01

d <- expand.grid(Height = seq(63, 87, length = 100), Girth = c(8, 13, 18), Species = c("A","B"))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(d, aes(x = Height, y = fit)) + theme_minimal() +
geom_line() + facet_grid(Species ~ Girth) +
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geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +
labs(x = "Height (ft)", y = "Expected Volume (cubic feet)")

plot(p)
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The help file for trees (see ?trees) suggests the model

E(Vi) = β1hig
2
i ,

which might be reasonable if we think of a tree as being approximately a cylinder or a cone and assume that
expected volume is approximately proportional to the volume of a cylinder (π(g/2)2h or πg2h/4) or cone
(πg2h/6), noting that girth is diameter in this data set. Note that both volumes are proportional to g2h. So
the expected volume could be written as

E(Vi) = β0 + β1xi,

where β0 = 0 and xi = hig
2
i , where β1 “absorbs” any constants in the volume calculation and also necessary

due to the units used to measure these quantities. To specify hig
2
i as an explanatory variable, we need to use

I() to keep R from misinterpreting interpret ’*’ and ‘ˆ’ anything other than the mathematical operators.
m <- lm(Volume ~ -1 + I(Height*Girthˆ2), data = trees)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
I(Height * Girth^2) 0.002108 2.722e-05 77.44 4.137e-36

d <- expand.grid(Height = seq(63, 87, length = 100), Girth = c(8, 13, 18))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(d, aes(x = Height, y = fit)) + theme_minimal() +
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geom_line() + facet_wrap(. ~ Girth) +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +
labs(x = "Height (ft)", y = "Expected Volume (cubic feet)")

plot(p)
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Now suppose we specify the following model.
m <- lm(Volume ~ -1 + I(Height*Girthˆ2):Species, data = trees)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
I(Height * Girth^2):SpeciesA 0.002094 3.505e-05 59.72 6.526e-32
I(Height * Girth^2):SpeciesB 0.002131 4.425e-05 48.17 3.132e-29

We can see that this model is
E(Vi) = β1hig

2
i ai + β2hig

2
i bi,

where

ai =
{

1, if the i-th observation is of species A,

0, otherwise,

bi =
{

1, if the i-th observation is of species B,

0, otherwise,

so we can write the model as

E(Vi) =
{

β1hig
2
i , if the i-th observation is of species A,

β2hig
2
i , if the i-th observation is of species B.
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d <- expand.grid(Height = seq(63, 87, length = 100),
Girth = c(8, 13, 18), Species = c("A","B"))

d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(d, aes(x = Height, y = fit)) + theme_minimal() +
geom_line() + facet_grid(Species ~ Girth) +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +
labs(x = "Height (ft)", y = "Expected Volume (cubic feet)")

plot(p)
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Comparison of the two species:
lincon(m, a = c(-1,1)) # b2 - b1

estimate se lower upper tvalue df pvalue
(-1,1),0 3.786e-05 5.645e-05 -7.759e-05 0.0001533 0.6707 29 0.5077

Example: Visualization of models for an experiment on mate preference in female platys.

Consider data from an experiment on mate preference in female platys.
head(Sleuth3::case0602)

Percentage Pair Length
1 43.7 Pair1 35
2 54.0 Pair1 35
3 49.8 Pair1 35
4 65.5 Pair1 35
5 53.1 Pair1 35
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6 53.0 Pair1 35

p <- ggplot(Sleuth3::case0602, aes(x = Pair, y = Percentage)) +
geom_point(alpha = 0.5) + theme_minimal() + coord_flip() +
labs(x = NULL, y = "Percent Time Spent with Yellow-Tailed Male") +
scale_y_continuous(breaks = seq(0, 100, by = 10), limits = c(0,100))

plot(p)
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We will specify a model to allow for differences in the expected response over male pairs.
m <- lm(Percentage ~ Pair, data = Sleuth3::case0602)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.406 3.864 14.5965 5.208e-24
PairPair2 4.479 5.657 0.7919 4.308e-01
PairPair3 6.023 5.384 1.1187 2.667e-01
PairPair4 10.594 5.657 1.8727 6.485e-02
PairPair5 7.805 6.441 1.2118 2.292e-01
PairPair6 6.929 5.657 1.2250 2.243e-01

Computing and plotting the estimated expected response for each pair.
contrast(m, a = list(Pair = paste("Pair", 1:6, sep = "")),

cnames = paste("Pair", 1:6, sep = ""))

estimate se lower upper tvalue df pvalue
Pair1 56.41 3.864 48.71 64.10 14.60 78 5.208e-24
Pair2 60.89 4.131 52.66 69.11 14.74 78 2.990e-24
Pair3 62.43 3.749 54.97 69.89 16.65 78 2.114e-27
Pair4 67.00 4.131 58.78 75.22 16.22 78 1.052e-26
Pair5 64.21 5.152 53.95 74.47 12.46 78 3.039e-20
Pair6 63.34 4.131 55.11 71.56 15.33 78 3.006e-25

d <- data.frame(Pair = paste("Pair", 1:6, sep = ""))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))
d

Pair fit lwr upr
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1 Pair1 56.41 48.71 64.10
2 Pair2 60.89 52.66 69.11
3 Pair3 62.43 54.97 69.89
4 Pair4 67.00 58.78 75.22
5 Pair5 64.21 53.95 74.47
6 Pair6 63.34 55.11 71.56

p <- p + geom_errorbar(aes(y = NULL, ymin = lwr, ymax = upr), width = 0.2, data = d)
plot(p)
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Try replacing confidence with prediction to see prediction intervals.

15


	The Estimated Expected Response
	Prediction and the Standard Error of Prediction
	Visualization of Confidence Intervals and Prediction Intervals

