Wednesday, February 4

The Estimated Expected Response

Assuming the linear model
E(Y) = Bo+ piw1 + Paxa + - + B,

the estimated expected response at specified values of the response variables is

E(Y) = ﬁAO + /31331 + 32332 + -+ Bk@w
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where 21,22, ...,z are specified values of the explanatory variables. Because E(Y") is sometimes used for
predicting Y, we sometimes refer to it as the “predicted value” of Y and denote it as §.

Note that an expected response is simply a linear combination of the form

{=aofo+aifr+axfa+ - +apfr+0,

where ag = 1,a1 = x1,a9 = x9,...,a; =z and b = 0.
Example: Consider the following model for the whiteside data.

m <- 1m(Gas ~ Insul + Temp + Insul:Temp, data = MASS::whiteside) # note :: operator
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)

(Intercept) 6.8538 0.13596 50.409 7.997e-46
InsulAfter -2.1300 0.18009 -11.827 2.316e-16
Temp -0.3932 0.02249 -17.487 1.976e-23

InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04

What is the estimated expected gas consumption at 0, 5, and 10 degrees C after insulation? Either lincon
or contrast can be used (although contrast is probably easier).

library(trtools)
lincon(m, a = ¢c(1,1,0,0)) # After @ OC

estimate se lower upper tvalue df pvalue
(1,1,0,0),0 4.724 0.1181 4.487 4.961 40 52 9.918e-41

lincon(m, a = ¢(1,1,5,5)) # After @ 5C

estimate se lower upper tvalue df pvalue
(1,1,5,5),0 3.334 0.06024 3.213 3.455 55.35 52 6.772e-48

lincon(m, a = c(1,1,10,10)) # After @ 10C

estimate se lower upper tvalue df pvalue
(1,1,10,10),0 1.945 0.14 1.664 2.225 13.89 52 3.869e-19
contrast(m, a = list(Insul = "After", Temp = c(0,5,10)),
cnames = c("After @ OC","After @ 5C","After @ 10C"))

estimate se lower upper tvalue df pvalue
After @ OC 4.724 0.11810 4.487 4.961 40.00 52 9.918e-41



After @ 5C 3.334 0.06024 3.213 3.455 ©55.35 52 6.772e-48
After @ 10C 1.945 0.13996 1.664 2.225 13.89 52 3.869e-19

There are better approaches if we want more points.

d <- expand.grid(Temp = c(0,5,10), Insul = c("Before","After"))
d

Temp Insul
0 Before
5 Before
10 Before
0 After
5 After
10 After

DO WN -

predict(m, newdata = d)

1 2 3 4 5 6
6.854 4.888 2.921 4.724 3.334 1.945

predict(m, newdata = d, interval = "confidence")

fit lwr upr

1 6.854 6.581 7.127
2 4.888 4.760 5.016
3 2.921 2.676 3.167
4 4.724 4.487 4.961
5 3.334 3.213 3.455
6 1.945 1.664 2.225
cbind(d, predict(m, newdata = d, interval = "confidence"))

Temp Insul fit lwr upr

1 0 Before 6.854 6.581 7.127
2 5 Before 4.888 4.760 5.016
3 10 Before 2.921 2.676 3.167
4 0 After 4.724 4.487 4.961
5 5 After 3.334 3.213 3.455
6 10 After 1.945 1.664 2.225

Prediction and the Standard Error of Prediction
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The estimated expected response E(Y) can also be viewed as the predicted value of Y, justified by least
squares. The estimate of Y is then

= Po+ Pras + Poma + -+ + Bk
The (estimated) standard deviation of Y — Y is the standard error of prediction, defined as

A A~

SE(YY —Y) =4/SE(Y)2 + 02,
where o2 is the variance of Y (note two sources of variability — that of Y and that of Y). The prediction

interval for Y is then
g+ t\/SE(Y)? + 2.

Compare this with the confidence interval for E/'(-}7) which is
§ £ tSE(Y).
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Prediction intervals for Y are wider than confidence intervals for E(Y).

Example: Prediction intervals for 1m objects can also be obtained form predict.

predict(m, newdata = d, interval = "prediction")
fit lwr upr

1 6.854 6.151 7.557

2 4.888 4.227 5.548

3 2.921 2.228 3.614

4 4.724 4.034 5.414

5 3.334 2.675 3.994

6 1.945 1.238 2.651

Visualization of Confidence Intervals and Prediction Intervals
Example: Suppose we want to visualize the model for the whiteside data.

First consider a plot of the raw data.

p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas, color = Insul)) +
geom_point() + theme_minimal() +

labs(x = "Temperature (C)", y = "Gas Consumption", color = "Insulation")
plot(p)
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There are several ways we could show confidence intervals for the expected response or prediction intervals.

d <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, by = 1))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))
head(d)

Insul Temp fit lwr upr
1 Before -1 7.247 6.934 7.561



2 After -1 5.002 4.724 5.280
3 Before 0 6.854 6.581 7.127
4 After 0 4.724 4.487 4.961
5 Before 1 6.461 6.227 6.694
6 After 1 4.446 4.247 4.644

p <- p + geom_line(aes(y = fit), data = d)
plot(p)
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p <- p + geom_errorbar(aes(y = NULL, ymin = lwr, ymax = upr), width = 0.25, data = d)
plot(p)
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Here’s another approach using confidence intervals for the expected response.

d <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas, color = Insul)) +
geom_point() + theme_minimal() +
labs(x = "Temperature (C)", y = "Gas Consumption", color = "Insulation") +
geom_line(aes(y = fit), data = d) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr, fill = Insul),
alpha = 0.25, color = NA, data = d, show.legend = FALSE)
plot(p)
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Same approach but now for prediction intervals.

d
d

<- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
<- cbind(d, predict(m, newdata = d, interval = "prediction"))

<- ggplot(MASS::whiteside, aes(x = Temp, y = Gas, color = Insul)) +
geom_point() + theme_minimal() +
labs(x = "Temperature (C)", y = "Gas Consumption", color = "Insulation") +
geom_line(aes(y = fit), data = d) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr, fill = Insul),

alpha = 0.25, color = NA, data = d, show.legend = FALSE)

plot(p)
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We can put them together, and move the legend.

dl <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length
dl <- cbind(dl, predict(m, newdata = d1, interval = "confidence"))

100))

d2 <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
d2 <- cbind(d2, predict(m, newdata = d2, interval = "prediction"))

p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas, color = Insul)) +
geom_point() + theme_minimal() +
labs(x = "Temperature (C)", y = "Gas Consumption", color = "Insulation") +
geom_line(aes(y = fit), data = d1) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr, fill = Insul),
alpha = 0.25, color = NA, data = d1, show.legend = FALSE) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr, fill = Insul),
alpha = 0.25, color = NA, data = d2, show.legend = FALSE) +
theme (legend.position = "inside", legend.position.inside = c¢(0.8,0.8))
plot(p)
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Black and white for the color printer challenged.

dl <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))
dl <- cbind(dl, predict(m, newdata = d1, interval = "confidence"))

d2 <- expand.grid(Insul = c("Before","After"), Temp = seq(-1, 11, length = 100))

d2 <- cbind(d2, predict(m, newdata = d2, interval = "prediction"))

p <- ggplot(MASS::whiteside, aes(x = Temp, y = Gas)) +
geom_point(size = 1) + theme_minimal() + facet_wrap(~ Insul) +
labs(x = "Temperature (C)", y = "Gas Consumption") +
geom_line(aes(y = fit), data = d1) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr), fill = "black",

alpha = 0.25, color = NA, data = dl, show.legend = FALSE) +
geom_ribbon(aes(y = NULL, ymin = lwr, ymax = upr), fill = "black",
alpha = 0.25, color = NA, data = d2, show.legend = FALSE)
plot(p)
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Example: Consider visualizing several models for the trees data. How do we deal with having two
quantitative explanatory variables?

m <- 1lm(Volume ~ Height + Girth, data = trees)

d <- expand.grid(Height = seq(63, 87, length = 100), Girth = c(8, 13, 18))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(d, aes(x = Height, y = fit)) + theme_minimal() +
geom_line() + facet_wrap(~ Girth) +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +
labs(x = "Height (ft)", y = "Expected Volume (cubic feet)")
plot(p)
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Now suppose there is a third categorical variable Species.

set.seed(123)

trees$Species <- sample(c("A","B"), 31, TRUE)

head (trees)

Girth Height Volume Species

1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7
m

= W e e

B

<- 1m(Volume ~ Height + Girth + Height:Species + Girth:Species, data = trees)

summary (m) $coefficients

Estimate Std.

(Intercept) -58.67683
Height 0.37798
Girth 4.55074

Height:SpeciesB -0.07239
Girth:SpeciesB 0.39908

d <- expand.grid(Height =

p <- ggplot(d, aes(x = Height, y
geom_line() + facet_grid(Species ~ Girth) +

O O O ©

Error

.12536
.14777
.34654
.09906
0.

seq(63, 87, length
d <- cbind(d, predict(m, newdata = d,

56071

t value
-6.4301
2.5579
13.1320
-0.7307
0.7117

interval

10

Pr(>1tl)
.195e-07
.670e-02
.542e-13
.715e-01
.830e-01

100), Girth = c(8, 13, 18), Species = c("A","B"))
= "confidence"))

fit)) + theme_minimal() +



geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +
labs(x = "Height (ft)", y = "Expected Volume (cubic feet)")
plot(p)
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The help file for trees (see ?trees) suggests the model
E(Vi) = Brhig],

which might be reasonable if we think of a tree as being approximately a cylinder or a cone and assume that
expected volume is approximately proportional to the volume of a cylinder (m(g/2)%h or mg?h/4) or cone
(rg?h/6), noting that girth is diameter in this data set. Note that both volumes are proportional to g*h. So
the expected volume could be written as

E(V;) = Bo + prs,

where Sy = 0 and x; = h;g?, where 3; “absorbs” any constants in the volume calculation and also necessary
due to the units used to measure these quantities. To specify h;g2 as an explanatory variable, we need to use
I() to keep R from misinterpreting interpret "*’ and ‘*’ anything other than the mathematical operators.

m <- 1m(Volume ~ -1 + I(Height#*Girth"2), data = trees)
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)
I(Height * Girth~2) 0.002108 2.722e-05 77.44 4.137e-36

d <- expand.grid(Height = seq(63, 87, length = 100), Girth = c(8, 13, 18))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(d, aes(x = Height, y = fit)) + theme_minimal() +
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geom_line() + facet_wrap(. ~ Girth) +

geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +

labs(x = "Height (ft)", y = "Expected Volume (cubic feet)")
plot(p)
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Now suppose we specify the following model.

m <- 1m(Volume ~ -1 + I(Height+*Girth"2):Species, data = trees)
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)
I(Height * Girth~2):SpeciesA 0.002094 3.505e-05 59.72 6.526e-32
I(Height * Girth~2):SpeciesB 0.002131 4.425e-05 48.17 3.132e-29

We can see that this model is
E(V;) = Brhig?a; + Bahig?bi,

where
1, if the i-th observation is of species A,
a; =
’ 0, otherwise,
b 1, if the i-th observation is of species B,
L 0, otherwise,

so we can write the model as

BE(V)) = Bihig?, if the i-th observation is of species A,
! Bahig?, if the i-th observation is of species B.
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d <- expand.grid(Height = seq(63, 87, length = 100),
Girth = c(8, 13, 18), Species = c("A","B"))
d <- cbind(d, predict(m, newdata = d, interval = "confidence"))

p <- ggplot(d, aes(x = Height, y = fit)) + theme_minimal() +
geom_line() + facet_grid(Species ~ Girth) +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +
labs(x = "Height (ft)", y = "Expected Volume (cubic feet)")

plot (p)
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Comparison of the two species:

lincon(m, a = c(-1,1)) # b2 - bl

estimate se lower upper tvalue df pvalue
(-1,1),0 3.786e-05 5.645e-05 -7.759e-05 0.0001533 0.6707 29 0.5077
Example: Visualization of models for an experiment on mate preference in female platys.
Consider data from an experiment on mate preference in female platys.

head (Sleuth3: :case0602)

Percentage Pair Length

1 43.7 Pairl 35
2 54.0 Pairl 35
3 49.8 Pairil 35
4 65.5 Pairl 35
5 53.1 Pairl 35

13
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6 53.0 Pairl

35

p <- ggplot(Sleuth3::case0602, aes(x
geom_point(alpha =

labs(x

0.5) + theme_minimal() + coord_flip() +

scale_y_continuous (breaks

plot(p)
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We will specify a model to allow for differences in the expected response over male pairs.

Sleuth3: :case0602)

m <- lm(Percentage ~ Pair, data
summary (m) $coefficients

(Intercep
PairPair2
PairPair3
PairPair4d
PairPairb
PairPair6

t)

Estimate Std. Error t value

56.
.479
6.
10.
7.
6.

4

406

023
594
805
929

3.

5
5
5
6

5

864

.657
.384
.657
.441
.657

14.

= = = = O

5965

L7919
.1187
L8727
.2118
.2250

Pr(>ltl)
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.20
.30
.66
.48
.29
.243e-01

8e-24
8e-01
Te-01
5e-02
2e-01

Computing and plotting the estimated expected response for each pair.

contrast(m, a =
cnames = paste("Pair", 1:6, sep = ""))

estimate

Pairl
Pair2
Pair3
Pair4d
Pairb
Pair6

56.
60.
62.
67.
64.
63.

41
89
43
00
21
34

se

3.864
4.131
3.
4
5

749

.131
.152
4.

131

d <- data.frame(Pair
d <- cbind(d, predict(m, newdata

d

Pair

fit

lwr

lower

48

52.
54.

58
53

55.

.71
66
97
.78
.95
11

upper tvalue

64.
69.
69.
75.
74.
71.

10
11
89
22
47
56

14.
14.
16
16
12
15

60
74

.65
.22
.46
.33

df
78
78
78
78
78
78

W=, NDNO

3.

pvalue
.208e-24
.990e-24
.114e-27
.052e-26
.039e-20
006e-25

= paste("Pair", 1:6, sep = ""))
d, interval = "confidence"))

upr
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Pairl 56.41 48.71 64.10
Pair2 60.89 52.66 69.11
Pair3 62.43 54.97 69.89
Pair4 67.00 58.78 75.22
Pairb5 64.21 53.95 74.47
Pair6 63.34 55.11 71.56

T WN

<- p + geom_errorbar(aes(y = NULL, ymin = lwr, ymax = upr), width = 0.2, data = d)
plot(p)
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Try replacing confidence with prediction to see prediction intervals.
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