
Monday, February 3

Modeling Nonlinearity
Four approaches to modeling a nonlinear relationship between the expected response and a quantitative
explanatory variable.

1. polynomials

2. transformations

3. splines

4. nonlinear regression

The first three can be done with linear models.

Polynomial Regression
If we have a single explanatory variable xi, then a polynomial regression model of degree k is

E(Yi) = β0 + β1xi + β2x2
i + · · · + βkxk

i .

Note that this is a linear model since we can write it as

E(Yi) = β0 + β1xi1 + β2xi2 + · · · + βkxik,

where xi1 = xi, xi2 = x2
i , . . . , xik = xk

i .

Example: Consider again the ToothGrowth data but with dose treated as a quantitative explanatory variable,
and ignoring supplement type for now. Note the use of the “inhibit” function I here.
m <- lm(len ~ dose + I(doseˆ2), data = ToothGrowth)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.49 3.178 -0.7836 4.365e-01
dose 30.16 6.147 4.9052 8.148e-06
I(dose^2) -7.93 2.366 -3.3514 1.432e-03

This model is
E(Li) = β0 + β1di + β2d2

i ,

where di is dose.
d <- expand.grid(dose = seq(0.25, 2.25, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len)) +
geom_point(aes(color = supp), alpha = 0.5) +
geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") +
theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)
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Note that the following are equivalent ways to specify this model.
# create a new variable for squared dose
ToothGrowth$dose2 <- ToothGrowth$doseˆ2
m <- lm(len ~ dose + dose2, data = ToothGrowth)

# specify squared dose in the model formula using the "inhibit" function
m <- lm(len ~ dose + I(doseˆ2), data = ToothGrowth)

# use the poly function to create the extra term
m <- lm(len ~ poly(dose, degree = 2), data = ToothGrowth)

I recommend not using the first approach of creating a new variable only because it is easier to have the
transformation “built in” to the model when applying other functions to the model object like predict or
contrast.

Note: Using poly without the option raw = TRUE will produce “orthogonal polynomials” which is a re-
parameterization of the model. This approach is sometimes recommended due to numerical instability of
“raw” polynomials, but in many cases this is not an issue. But the poly function is sometimes convenient,
especially for polynomials of higher degree.

Clearly in such a model the rate of change in expected length is not necessarily constant.
library(trtools)
contrast(m, a = list(dose = 1), b = list(dose = 0.5)) # 0.5 to 1

estimate se lower upper tvalue df pvalue
9.13 1.341 6.444 11.82 6.806 57 6.697e-09
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contrast(m, a = list(dose = 1.5), b = list(dose = 1)) # 1 to 1.5

estimate se lower upper tvalue df pvalue
5.165 0.4472 4.27 6.06 11.55 57 1.47e-16

This can also be seen mathematically by writing the model as

E(Li) = β0 + β1xi + β2x2
i = β0 + (β1 + β2xi)︸ ︷︷ ︸

δi

xi = β0 + δixi,

so that the rate of change in length per unit increase in dose depends on dose (if β2 ̸= 0). In a sense, dose is
“interacting with itself” — i.e., the “effect” of a one unit increase in dose depends on the dose.

We can have the polynomial depend on (i.e, interact with) supplement type.
m <- lm(len ~ dose + I(doseˆ2) + supp + dose:supp + I(doseˆ2):supp, data = ToothGrowth)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.433 3.847 -0.3726 7.109e-01
dose 34.520 7.442 4.6384 2.272e-05
I(dose^2) -10.387 2.864 -3.6260 6.383e-04
suppVC -2.113 5.440 -0.3885 6.992e-01
dose:suppVC -8.730 10.525 -0.8295 4.105e-01
I(dose^2):suppVC 4.913 4.051 1.2129 2.305e-01

Note that we could also have written
m <- lm(len ~ poly(dose, 2)*supp, data = ToothGrowth)

In a model formula argument, a*b expands to a + b + a:b.

This model can be written as

E(Li) =
{

β0 + β1di + β2d2
i , if supplement type is OJ,

β0 + β3 + (β1 + β4)di + (β2 + β5)d2
i , if supplement type is VC,

where di is dose, or alternatively as

E(Li) =
{

β0 + β1di + β2d2
i , if supplement type is OJ,

γ0 + γ1di + γ2d2
i , if supplement type is VC,

where γ0 = β0 + β3, γ1 = β1 + β4, and γ2 = β2 + β5. There is a distinct polynomial of degree two for each
supplement type.
d <- expand.grid(supp = c("OJ", "VC"), dose = seq(0.25, 2.25, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)
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Polynomials are, in principle, quite general. But in many cases we would like to have a monotonic relationship,
and/or have a model exhibit an asymptote. Finally, the parameters of a polynomial model are not easily to
interpret.

Logarithmic Transformations
Applying a logarithmic transformation to an explanatory variable may be useful for explanatory variables
that tend to have “diminishing returns” with respect to the expected response.

Example: Consider a linear model for expected length but now with log(dose) as the explanatory variable.
m <- lm(len ~ log(dose) + supp + log(dose):supp, data = ToothGrowth)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.663 0.6791 30.425 1.629e-36
log(dose) 9.255 1.2000 7.712 2.303e-10
suppVC -3.700 0.9605 -3.852 3.033e-04
log(dose):suppVC 3.845 1.6971 2.266 2.737e-02

d <- expand.grid(supp = c("OJ", "VC"), dose = seq(0.25, 2.25, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)
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Note that log is the “natural” logarithm or base-e logarithm sometimes written as ln(x) or loge(x). Here are
few things to remember about logarithms when using them for transformations of explanatory variables.

1. Logarithms of different bases are proportional. In general

logb(x) = c loga(x),

where c = 1/ loga(b). So usually when we are using things like contrast or the emmeans package to
facilitate our inferences the base does not matter. You can use log2 for log2(x) and log10 for log10(x),
and for an arbitrary base b you can use log(x,b) for logb(x).
m <- lm(len ~ log2(dose) + supp + log2(dose):supp, data = ToothGrowth)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.663 0.6791 30.425 1.629e-36
log2(dose) 6.415 0.8318 7.712 2.303e-10
suppVC -3.700 0.9605 -3.852 3.033e-04
log2(dose):suppVC 2.665 1.1763 2.266 2.737e-02

d <- expand.grid(supp = c("OJ", "VC"), dose = seq(0.25, 2.25, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)
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2. If we apply a log transformation to x, then the effect of increasing/decreasing x by some amount is not
constant, but the effect of increasing/decreasing x by a factor is constant. For example, suppose we
have the model

E(Y ) = β0 + β1 log(x).

Then for any c > 0 then

β0 + β1 log(cx) = β0 + β1 log(c) + β1 log(x) = E(Y ) + β1 log(c)

so then E(Y ) increases/decreases by β1 log(c). For example, the effect of doubling of halving dose is
constant in this model.
contrast(m,

a = list(dose = 1, supp = c("OJ","VC")),
b = list(dose = 0.5, supp = c("OJ","VC")),
cnames = c("OJ", "VC"))

estimate se lower upper tvalue df pvalue
OJ 6.415 0.8318 4.749 8.081 7.712 56 2.303e-10
VC 9.080 0.8318 7.414 10.746 10.916 56 1.733e-15

contrast(m,
a = list(dose = 2, supp = c("OJ","VC")),
b = list(dose = 1, supp = c("OJ","VC")),
cnames = c("OJ", "VC"))

estimate se lower upper tvalue df pvalue
OJ 6.415 0.8318 4.749 8.081 7.712 56 2.303e-10
VC 9.080 0.8318 7.414 10.746 10.916 56 1.733e-15
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3. Recall that log(x) is only defined for x > 0.

Exponential Transformations
Consider the linear model

E(Y ) = β0 + β12−x/h

where h > 0 is some specified value. This applies an exponential transformation to x with the following
properties.

1. If x = 0 then E(Y ) = β0 + β1, so the “y-intercept” is β0 + β1.

2. As x increases then E(Y ) approaches an asymptote of β0. This is an upper (if β1 < 0) or lower (if
β1 > 0) asymptote.1

3. The quantity h can be interpreted as the “half-life” of the curve in the sense that it is the value of
x at which the expected responses is half way between the intercept at β0 + β1 and its upper/lower
asymptote at β0 because if x = h then

E(Y ) = β0 + β12−x/h = β0 + β1/2,

and β0 + β1/2 is the midpoint between the “intercept” of E(Y ) = β0 + β1 and the asymptote of β0.

4. If β1 < 0 then −β1 is how much E(Y ) increases from x = 0 as it approaches the asymptote, while if
β1 > 0 then β1 is how much E(Y ) decreases from when x = 0 as it approaches the asymptote.

0

β0 + β1

β0 + β1 2

β0

0 h
x

E
(Y

)

β1 < 0

0

β0 + β1

β0 + β1 2

β0

0 h
x

E
(Y

)

β1 > 0

Consider again a linear model for the ToothGrowth data with an exponential transformation of dose with h
= 1.

1This can be seen by showing that limx→∞ β0 + β12−x/h = β0 if h > 0, and by showing that the first derivative of
β0 + β12−x/h with respect to x is positive if β1 < 0 and negative if β1 > 0 if h > 0.
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m <- lm(len ~ I(2ˆ(-dose/1)), data = ToothGrowth)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.14 1.555 22.60 1.942e-30
I(2^(-dose/1)) -33.61 2.988 -11.25 3.303e-16

d <- expand.grid(supp = c("OJ", "VC"), dose = seq(0, 6, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + xlim(0,6) +
geom_line(aes(y = yhat), color = "black", data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)
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lincon(m, a = c(1,1)) # intercept

estimate se lower upper tvalue df pvalue
(1,1),0 1.528 1.635 -1.745 4.8 0.9345 58 0.3539

Now suppose that we let the effect of dose “interact” with supplement type.
m <- lm(len ~ I(2ˆ(-dose/1)) + supp + supp:I(2ˆ(-dose/1)), data = ToothGrowth)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 34.054 1.925 17.6872 1.375e-24
I(2^(-dose/1)) -27.569 3.700 -7.4519 6.199e-10
suppVC 2.169 2.723 0.7964 4.291e-01
I(2^(-dose/1)):suppVC -12.083 5.232 -2.3094 2.463e-02

d <- expand.grid(supp = c("OJ", "VC"), dose = seq(0, 6, length = 100))
d$yhat <- predict(m, newdata = d)

p <- ggplot(ToothGrowth, aes(x = dose, y = len, color = supp)) +
geom_point(alpha = 0.5) + xlim(0,6) +
geom_line(aes(y = yhat), data = d) +
labs(x = "Dose (mg/day)", y = "Odontoblast Length",

color = "Supplement Type") + theme_minimal() +
theme(legend.position = "inside", legend.position.inside = c(0.8,0.2))

plot(p)
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This model can be written as

E(Yi) = β0 + β12−xi/h + β2di + β3di2−xi/h,

where di = 1 if the supplement type is VC, and di = 0 otherwise, and h = 1. We can also write this model
case-wise as

E(Yi) =
{

β0 + β12−xi/h, if the supplement type of the i-th observation is OJ,

β0 + β2 + (β1 + β3)2−xi/h, if the supplement type of the i-th observation is VC,

or

E(Yi) =
{

β0 + β12−xi/h, if the supplement type of the i-th observation is OJ,

γ0 + γ12−xi/h, if the supplement type of the i-th observation is VC,
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where γ0 = β0 + β2 and γ1 = β1 + β3. We can make inferences for the intercepts and asymptotes for each
supplement type using lincon.
lincon(m, a = c(1,1,0,0)) # b0 + b1 = intercept for OJ

estimate se lower upper tvalue df pvalue
(1,1,0,0),0 6.485 2.024 2.429 10.54 3.203 56 0.002243

lincon(m, a = c(1,1,1,1)) # g0 + g1 = b0 + b2 + b1 + b3 = intercept for VC

estimate se lower upper tvalue df pvalue
(1,1,1,1),0 -3.429 2.024 -7.485 0.6261 -1.694 56 0.09582

lincon(m, a = c(1,0,1,0)) # g0 = b0 + b2 = asymptote for VC

estimate se lower upper tvalue df pvalue
(1,0,1,0),0 36.22 1.925 32.37 40.08 18.81 56 7.07e-26

We can also obtain (approximate) inferences using contrast.
contrast(m, a = list(dose = 0, supp = c("OJ","VC")),

cname = c("OJ intercept","VC intercept"))

estimate se lower upper tvalue df pvalue
OJ intercept 6.485 2.024 2.429 10.5401 3.203 56 0.002243
VC intercept -3.429 2.024 -7.485 0.6261 -1.694 56 0.095824

contrast(m, a = list(dose = 100, supp = c("OJ","VC")),
cname = c("OJ asymptote","VC asymptote"))

estimate se lower upper tvalue df pvalue
OJ asymptote 34.05 1.925 30.20 37.91 17.69 56 1.375e-24
VC asymptote 36.22 1.925 32.37 40.08 18.81 56 7.070e-26

But wouldn’t it make sense to have something like the following?

E(Yi) =
{

β0 + β12−xi/hOJ , if the supplement type of the i-th observation is OJ,

β0 + β12−xi/hVC , if the supplement type of the i-th observation is VC,

because at x = 0 and as x → ∞ there should be no difference in the supplement type, but there might be a
difference in how “fast” the expected response increases with dose. But unless we know hOJ and hVC, this
model would be nonlinear (i.e., the model is not linear if hOJ and hVC are unknown parameters as opposed
to known values).
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