
Friday, January 30

Confidence Intervals and Significance Tests
A significance test can be used to derive a confidence interval, and a confidence interval can be used to
conduct a significance test. If we have hypotheses for a two-sided test like

H0 : βj = c and Ha : βj ̸= c,

then we reject H0 if and only if the confidence interval for βj does not contain c, with a couple of caveats.

1. The confidence level must be (1 − α)100% (α is the significance level).

2. The test is two-sided (but one-sided tests match one-sided confidence intervals).

A confidence interval with confidence level (1 − α)100% effectively defines all values of the parameter that
would not be rejected in a two-sided test with significance level α.

Note that this also applies to a linear function of model parameters (ℓ). So if we have the hypotheses

H0 : ℓ = c and Ha : ℓ ̸= c,

then we reject H0 if and only if the confidence interval for ℓ does not contain c.

Example: Consider again the model for the anorexia data, but parameterized to compare the two treatment
conditions against the control so that the model is

E(Yi) =


β0, if the i-th observation is under the control condition,

β0 + β1, if i-th observation under cognitive behavioral therapy,

β0 + β2, if the i-th observations is under family therapy.

library(MASS) # for anorexia data
anorexia$change <- anorexia$Postwt - anorexia$Prewt
anorexia$Treat <- relevel(anorexia$Treat, ref = "Cont")
m <- lm(change ~ Treat, data = anorexia)
cbind(summary(m)$coefficients, confint(m))

Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
(Intercept) -0.450 1.476 -0.3048 0.761447 -3.3954 2.495
TreatCBT 3.457 2.033 1.7001 0.093608 -0.5994 7.513
TreatFT 7.715 2.348 3.2854 0.001602 3.0302 12.399

We can produce the same inferences using contrast.
library(trtools)
contrast(m,

a = list(Treat = c("CBT","FT")),
b = list(Treat = "Cont"),
cnames = c("Cognitive vs Control", "Family vs Control"))

estimate se lower upper tvalue df pvalue
Cognitive vs Control 3.457 2.033 -0.5994 7.513 1.700 69 0.093608
Family vs Control 7.715 2.348 3.0302 12.399 3.285 69 0.001602
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Joint Hypotheses
Example: Consider the following model and hypotheses for the anorexia data.
library(MASS) # for anorexia data
anorexia$change <- anorexia$Postwt - anorexia$Prewt
m.anorexia <- lm(change ~ Treat, data = anorexia)
summary(m.anorexia)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.007 1.398 2.151 0.03499
TreatCont -3.457 2.033 -1.700 0.09361
TreatFT 4.258 2.300 1.852 0.06838

The model is therefore

E(Yi) =


β0, if the i-th observation is under cognitive behavioral therapy,

β0 + β1, if i-th observation is under the control condition,

β0 + β2, if the i-th observations is under family therapy.

In some cases we might be testing hypothesis like H0 : β2 = 0 or H0 : β1 − β2 = 0. But in other cases we
might be testing what is sometimes called a joint hypothesis such as

H0 : β1 = 0 and β2 = 0 versus Ha : not both β1 = 0 and β2 = 0.

What does it imply if both β1 = 0 and β2 = 0?

Example: Consider the following model for the whiteside data.
m.insulation <- lm(Gas ~ Insul + Temp + Insul:Temp, data = whiteside)
summary(m.insulation)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8538 0.13596 50.409 7.997e-46
InsulAfter -2.1300 0.18009 -11.827 2.316e-16
Temp -0.3932 0.02249 -17.487 1.976e-23
InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04

The model is therefore

E(Yi) =
{

β0 + β2ti, if i-th observation is before insulation,

β0 + β1 + (β2 + β3)ti, if i-th observation is after insulation.

We might test a single null hypothesis that the rate of change in expected gas consumption with respect to
temperature is the same before and after insulation — i.e., H0 : β3 = 0. But consider the joint hypothesis

H0 : β1 = 0 and β3 = 0 versus Ha : not both β1 = 0 and β3 = 0.

What does it imply if both β1 = 0 and β3 = 0?

The “Analysis of Variance” Calculations
Calculations for inference for linear models is often based on the sums of squares decomposition

n∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
total

=
n∑

i=1
(ŷi − ȳ)2

︸ ︷︷ ︸
model/regression

+
n∑

i=1
(yi − ŷi)2

︸ ︷︷ ︸
error/residual

,
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where ŷi = β̂0 + β̂1xi1 + · · · + β̂kxik, and the degrees of freedom decomposition

n − 1︸ ︷︷ ︸
total

= p − 1︸ ︷︷ ︸
model/regression

+ n − p︸ ︷︷ ︸
error/residual

,

where p is the number of βj parameters, and p = k + 1 if the model includes a β0. (Note: If the β0 parameter
is omitted from the model, the total degrees of freedom becomes n and the model/regression degrees of
freedom becomes p.)

A mean square is a variance-like quantity that is a sum of squares divided by its corresponding degrees of
freedom.

Tests can be conducted using the F test statistic which can be written as

F = (RSSnull − RSSfull)/(RDFnull − RDFfull)
RSSfull/RDFfull

,

where RSS and RDF refer to the residual sum of squares and degrees of freedom, respectively. The degrees
of freedom for the F distribution are RDFnull − RDFfull (numerator) and RSSfull (denominator). The full
model is the model we are using, and the null (aka “reduced”) model is what the full model reduces to if the
null hypothesis is true. The F test statistic can be used for tests of individual and joint hypotheses in linear
models.

Using the anova Function
The anova function is particularly useful for testing joint hypothesis, although it can also be used to test a
hypothesis about a single parameter.

Applying anova to a single model will produce the RSS and RDF in the Residuals row.
anova(m.anorexia)

Analysis of Variance Table

Response: change
Df Sum Sq Mean Sq F value Pr(>F)

Treat 2 615 307.3 5.42 0.0065 **
Residuals 69 3911 56.7
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To conduct a test, the recommended approach is to apply anova to a null model and the full model.
m.full <- lm(change ~ Treat, data = anorexia)
m.null <- lm(change ~ 1, data = anorexia) # use ~ 1 if no explanatory variables
anova(m.null, m.full)

Analysis of Variance Table

Model 1: change ~ 1
Model 2: change ~ Treat

Res.Df RSS Df Sum of Sq F Pr(>F)
1 71 4525
2 69 3911 2 615 5.42 0.0065 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m.full <- lm(Gas ~ Insul + Temp + Insul:Temp, data = whiteside)
m.null <- lm(Gas ~ Temp, data = whiteside)
anova(m.null, m.full)

3



Analysis of Variance Table

Model 1: Gas ~ Temp
Model 2: Gas ~ Insul + Temp + Insul:Temp

Res.Df RSS Df Sum of Sq F Pr(>F)
1 54 40.0
2 52 5.4 2 34.6 166 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The anova function can also do a test concerning a single parameter. Here are two approaches to testing the
null hypothesis that β3 = 0 in the model

E(Yi) =
{

β0 + β2ti, if i-th observation is before insulation,

β0 + β1 + (β2 + β3)ti, if i-th observation is after insulation.

m.full <- lm(Gas ~ Insul + Temp + Insul:Temp, data = whiteside)
m.null <- lm(Gas ~ Insul + Temp, data = whiteside)
anova(m.null, m.full)

Analysis of Variance Table

Model 1: Gas ~ Insul + Temp
Model 2: Gas ~ Insul + Temp + Insul:Temp

Res.Df RSS Df Sum of Sq F Pr(>F)
1 53 6.77
2 52 5.43 1 1.34 12.9 0.00073 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.full)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8538 0.13596 50.409 7.997e-46
InsulAfter -2.1300 0.18009 -11.827 2.316e-16
Temp -0.3932 0.02249 -17.487 1.976e-23
InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04

Comment: When conducting a test concerning one parameter (or a single linear function of the model
parameters), the F and t test statistics have the relationship t2 = F and produce the same p-values.

Example: Three Approaches to One Test
Consider again the model for the anorexia data, but suppose we parameterized the model differently.
anorexia$Treat <- relevel(anorexia$Treat, ref = "Cont")
m.anorexia <- lm(change ~ Treat, data = anorexia)
summary(m.anorexia)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.450 1.476 -0.3048 0.761447
TreatCBT 3.457 2.033 1.7001 0.093608
TreatFT 7.715 2.348 3.2854 0.001602

4



The model is therefore

E(Yi) =


β0, if the i-th observation is from the control group,

β0 + β1, if the i-th observation is from the cognitive-behavioral therapy group,

β0 + β2, if the i-th observations is from the family therapy group.

Now consider a test of the null hypothesis that the expected weight change is the same regardless of which of
the two therapies (i.e., cognitive-behavioral or family) is used. This is the null hypothesis that β1 = β2 or,
equivalently, β1 − β2 = 0.

1. Using lincon we can test this null hypothesis as follows.
m <- lm(change ~ Treat, data = anorexia)
trtools::lincon(m, a = c(0, 1, -1))

estimate se lower upper tvalue df pvalue
(0,1,-1),0 -4.258 2.3 -8.845 0.3299 -1.852 69 0.06838

This is because the null hypothesis can be written as

ℓ = 0 × β0 + 1 × β1 + (−1) × β2 = β1 − β2.

2. Using contrast we can test this null hypothesis as follows.
m <- lm(change ~ Treat, data = anorexia)
trtools::contrast(m, a = list(Treat = "CBT"), b = list(Treat = "FT"))

estimate se lower upper tvalue df pvalue
-4.258 2.3 -8.845 0.3299 -1.852 69 0.06838

3. Using anova we can test this null hypothesis as follows.
anorexia$therapy <- ifelse(anorexia$Treat == "Cont", "control", "therapy")
head(anorexia)

Treat Prewt Postwt change therapy
1 Cont 80.7 80.2 -0.5 control
2 Cont 89.4 80.1 -9.3 control
3 Cont 91.8 86.4 -5.4 control
4 Cont 74.0 86.3 12.3 control
5 Cont 78.1 76.1 -2.0 control
6 Cont 88.3 78.1 -10.2 control
tail(anorexia)

Treat Prewt Postwt change therapy
67 FT 82.1 95.5 13.4 therapy
68 FT 77.6 90.7 13.1 therapy
69 FT 83.5 92.5 9.0 therapy
70 FT 89.9 93.8 3.9 therapy
71 FT 86.0 91.7 5.7 therapy
72 FT 87.3 98.0 10.7 therapy
m.full <- lm(change ~ Treat, data = anorexia)
m.null <- lm(change ~ therapy, data = anorexia)
anova(m.null, m.full)

Analysis of Variance Table

Model 1: change ~ therapy
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Model 2: change ~ Treat
Res.Df RSS Df Sum of Sq F Pr(>F)

1 70 4105
2 69 3911 1 194 3.43 0.068 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the null model can be written as

E(Yi) =
{

β0, if the i-th observation is from the control group,

β0 + β1, if the i-th observation is from the therapy group,

or

E(Yi) =


β0, if the i-th observation is from the control group,

β0 + β1, if the i-th observation is from the cognitive-behavioral therapy group,

β0 + β1, if the i-th observations is from the family therapy group.

So this model is effectively equivalent to the full model with β1 = β2.

The Trouble with ANOVA Tables
I do not recommended trying to produce tests by applying anova to a single model object. While it can
produce desired tests in some cases and if used correctly, it often produces confusing results. For example,
the following produces a test of the null hypothesis H0 : β1 = 0, β2 = 0 for the anorexia model.
m <- lm(change ~ Treat, data = anorexia)
anova(m)

Analysis of Variance Table

Response: change
Df Sum Sq Mean Sq F value Pr(>F)

Treat 2 615 307.3 5.42 0.0065 **
Residuals 69 3911 56.7
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

But the tests shown here are maybe not what you think they are.
m <- lm(Gas ~ Insul + Temp + Insul:Temp, data = whiteside)
anova(m)

Analysis of Variance Table

Response: Gas
Df Sum Sq Mean Sq F value Pr(>F)

Insul 1 22.3 22.3 214.2 < 2e-16 ***
Temp 1 45.9 45.9 439.9 < 2e-16 ***
Insul:Temp 1 1.3 1.3 12.9 0.00073 ***
Residuals 52 5.4 0.1
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If you know what you are doing, there are alternatives to anova that are perhaps better (e.g., the Anova
function from the car package), but there is often a more clear approach using two models in anova, using
contrast or lincon, or using the emmeans package (which we will discuss later).
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Note: Another potentially confusing test is one that appears at the bottom of summary. It tests the null
hypothesis that all βj (except β0) equal zero. For the model for the anorexia data it is the same as the test
conducted earlier.
m <- lm(change ~ Treat, data = anorexia)
summary(m)

Call:
lm(formula = change ~ Treat, data = anorexia)

Residuals:
Min 1Q Median 3Q Max

-12.56 -4.54 -1.01 3.85 17.89

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.45 1.48 -0.30 0.7614
TreatCBT 3.46 2.03 1.70 0.0936 .
TreatFT 7.71 2.35 3.29 0.0016 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.53 on 69 degrees of freedom
Multiple R-squared: 0.136, Adjusted R-squared: 0.111
F-statistic: 5.42 on 2 and 69 DF, p-value: 0.0065

But for the model for the whiteside data the utility of this test is questionable.
m <- lm(Gas ~ Insul + Temp + Insul:Temp, data = whiteside)
summary(m)

Call:
lm(formula = Gas ~ Insul + Temp + Insul:Temp, data = whiteside)

Residuals:
Min 1Q Median 3Q Max

-0.9780 -0.1801 0.0376 0.2093 0.6380

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.8538 0.1360 50.41 < 2e-16 ***
InsulAfter -2.1300 0.1801 -11.83 2.3e-16 ***
Temp -0.3932 0.0225 -17.49 < 2e-16 ***
InsulAfter:Temp 0.1153 0.0321 3.59 0.00073 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.323 on 52 degrees of freedom
Multiple R-squared: 0.928, Adjusted R-squared: 0.924
F-statistic: 222 on 3 and 52 DF, p-value: <2e-16

Just because R gives you output does not mean it is useful!

Note: The Residual standard error shown by summary is the square root of the residual/error mean
square (i.e., the square root of the ratio of the residual sum of squares to the residual degrees of freedom).
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The degrees of freedom shown after Residual standard error is the residual degrees of freedom.
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