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Parameter Estimation
There are many ways to estimate the parameters of a regression model. One useful and common approach is
to use the method of least squares.

Least Squares Estimation of β0, β1, . . . , βk

Consider the linear model
E(Yi) = β0 + β1xi1 + · · · + βkxik.

The least squares estimates of β0, β1, . . . , βp are those values that minimize

n∑
i=1

(yi − µi)2 = (y1 − µ1)2 + (y2 − µ2)2 + · · · + (yn − µn)2,

where
µi = β0 + β1xi1 + β2xi2 + · · · + βkxik.

These estimates are denoted as β̂0, β̂1, . . . , β̂k. They are labeled under Estimate from the output of the
summary function.

Estimation of a Linear Function of Parameters

Replacing β0, β1, . . . , βk with β̂0, β̂1, . . . , β̂k in

ℓ = a0β0 + a1β1 + · · · + akβk + b

gives the estimate of the linear function ℓ,

ℓ̂ = a0β̂0 + a1β̂1 + · · · + akβ̂k + b.

These estimates are labeled as estimate when using the lincon and contrast functions.

Estimation of the Response Variable Variance

The typical linear model also has one additional parameter, the variance of Yi (denoted as σ2), which is
assumed to be a constant (i.e., the same regardless of the values of the explanatory variables). The usual
estimator of σ2 is

σ̂2 =
∑n

i=1(yi − ŷi)2

n − k − 1 .

The estimate of σ (not σ2) is labeled as the “residual standard error” from the output of summary, and the
“degrees of freedom” ” associated with it is n − k − 1 (more generally, this degrees of freedom is n minus the
number of β parameters in the model so we would define it as n − p where p is the number of parameters
other than σ2).

Note: We sometimes make a distinction between an estimator (i.e., the formula/procedure that produces a
estimate), and the estimate (i.e., a specific value produced by an estimator).
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Sampling Distributions
A sampling distribution is the probability distribution of an estimator.

Example: Consider the model E(Yi) = β0, and assume that β0 = 50 and also that the standard deviation of
Yi is σ = 10. The probability distribution below shows the sampling distribution of β̂0.
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The figure below is a histogram of β̂0 from 1000 samples of n = 25 observations Y1, Y2, . . . , Y25.
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Example: Consider the model E(Yi) = β0 + β1xi where x1 = 1, x2 = 2, . . ., x10 = 10, β0 = 5, β1 = 1,
and σ = 1. The figure below shows the distribution of β̂0 and β̂1 from 10000 samples of observations of
Y1, Y2, . . . , Y10.
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Three properties of a sampling distribution are of interest.

1. The mean of a sampling distribution of an estimator (i.e., the expected value of the estimator). Ideally
this is equal to the parameter we are estimating (in which case we the estimator is unbiased), or
relatively close.

2. The standard deviation of the sampling distribution of an estimator, which is referred to as the
standard error of the estimator.

3. The shape of the sampling distribution. Typically as n increases the shape “approaches” that of a
normal distribution.

Standard Errors
We can often estimate standard errors of estimators of parameters or linear functions thereof. These are
labeled as Std. Error in the output of the summary function, and as se in the output of the lincon and
contrast functions.

Example: Consider the model for the whiteside data.
library(MASS) # contains the whiteside and anorexia data frames
mgas <- lm(Gas ~ Insul + Temp + Insul:Temp, data = whiteside)
summary(mgas)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.8538 0.13596 50.409 7.997e-46
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InsulAfter -2.1300 0.18009 -11.827 2.316e-16
Temp -0.3932 0.02249 -17.487 1.976e-23
InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04

Recall that the model can be written as

E(Gi) = β0 + β1di + β2ti + β3diti,

where di is an indicator variable for after insulation so that we can also write the model as

E(Gi) =
{

β0 + β2ti, if the i-th observation is before insulation,

β0 + β1 + (β2 + β3)ti, if the i-th observation is after insulation.

Estimates of the standard errors are reported by summary. Standard errors are also shown by lincon and
contrast.
library(trtools)
lincon(mgas, a = c(0,0,1,1)) # b2 + b3

estimate se lower upper tvalue df pvalue
(0,0,1,1),0 -0.2779 0.02292 -0.3239 -0.2319 -12.12 52 8.936e-17

contrast(mgas,
a = list(Insul = c("Before","After"), Temp = 2),
b = list(Insul = c("Before","After"), Temp = 1),
cnames = c("before","after"))

estimate se lower upper tvalue df pvalue
before -0.3932 0.02249 -0.4384 -0.3481 -17.49 52 1.976e-23
after -0.2779 0.02292 -0.3239 -0.2319 -12.12 52 8.936e-17

We can also obtain standard errors for estimating the expected weight change under each treatment condition
for the anorexia study/model.
anorexia$change <- anorexia$Postwt - anorexia$Prewt
mwght <- lm(change ~ Treat, data = anorexia)
contrast(mwght, a = list(Treat = c("Cont","CBT","FT")),

cnames = c("Control","Cognitive","Family"))

estimate se lower upper tvalue df pvalue
Control -0.450 1.476 -3.395 2.495 -0.3048 69 0.7614470
Cognitive 3.007 1.398 0.218 5.796 2.1509 69 0.0349920
Family 7.265 1.826 3.622 10.907 3.9787 69 0.0001688

Because the shape of a sampling distribution is usually approximately normal, we can say the following.

1. The mean distance between the parameter and the estimator is approximately SE ×
√

2/π ≈ SE × 0.8.

2. The median distance between the parameter and the estimator is approximately SE × 0.67.

3. The 95th percentile of the distance between the parameter and the estimator is approximately SE×1.96 ≈
SE × 2.

Note that all of these quantities are proportional to the standard error. Standard errors give us an idea of
how (in)accurate a given estimator is for a given parameter in a given model for a given design — the larger
the standard error the farther away the estimator will tend to be to the parameter (or function thereof) being
estimated.

Also note that in many cases the estimate and the (estimated) standard error are sufficient for computing
both confidence intervals and test statistics as shown in the next two sections.

4



Confidence Intervals
A confidence interval is an interval estimator (as opposed to a point estimator which is a single value)
with the property that the estimator has a specified probability of being correct (i.e., the confidence level of
the interval). Note that this probability is a property of the estimator, not an estimate.

One common kind of confidence interval (sometimes called a Wald confidence interval) has the general form

estimator ± multiplier × standard error.

For example,
β̂j ± t × SE(β̂j)

where SE(β̂j) is the (estimated) standard error of β̂j , and t is a “multiplier” to set the desired confidence
level. Similarly a confidence interval for ℓ is

ℓ̂ ± t × SE(ℓ̂).

In R confidence intervals for model parameters can usually be computed by applying the confint function
to the model object.
confint(mgas) # 95% confidence level is the default

2.5 % 97.5 %
(Intercept) 6.58100 7.1267
InsulAfter -2.49136 -1.7686
Temp -0.43836 -0.3481
InsulAfter:Temp 0.05087 0.1797

confint(mgas, level = 0.99) # 99% confidence level

0.5 % 99.5 %
(Intercept) 6.49030 7.2174
InsulAfter -2.61150 -1.6485
Temp -0.45336 -0.3331
InsulAfter:Temp 0.02944 0.2012

For some compact output I often use cbind to append the confidence intervals to the output from summary
as follows.
cbind(summary(mgas)$coefficients, confint(mgas))

Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
(Intercept) 6.8538 0.13596 50.409 7.997e-46 6.58100 7.1267
InsulAfter -2.1300 0.18009 -11.827 2.316e-16 -2.49136 -1.7686
Temp -0.3932 0.02249 -17.487 1.976e-23 -0.43836 -0.3481
InsulAfter:Temp 0.1153 0.03211 3.591 7.307e-04 0.05087 0.1797

Note that other functions like lincon and contrast provide confidence intervals by default.
lincon(mgas, a = c(0,0,1,1)) # b2 + b3

estimate se lower upper tvalue df pvalue
(0,0,1,1),0 -0.2779 0.02292 -0.3239 -0.2319 -12.12 52 8.936e-17

contrast(mgas,
a = list(Insul = c("Before","After"), Temp = 2),
b = list(Insul = c("Before","After"), Temp = 1),
cnames = c("before","after"))
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estimate se lower upper tvalue df pvalue
before -0.3932 0.02249 -0.4384 -0.3481 -17.49 52 1.976e-23
after -0.2779 0.02292 -0.3239 -0.2319 -12.12 52 8.936e-17

They also have a default confidence level of 95%, and will accept a level argument to specify other confidence
levels.

Significance Tests
We consider four components to a given significance test: hypotheses, test statistics, p-values, and a decision
rule.

Hypotheses

A significance test for a single parameter concerns a pair of hypotheses such as

H0 : βj = c and Ha : βj ̸= c,

or
H0 : βj = c and Ha : βj > c,

or
H0 : βj = c and Ha : βj < c,

where c is some specified value (often but not necessarily zero). Similarly we can have hypotheses concerning
ℓ by replacing βj with ℓ in the above statement such as

H0 : ℓ = c and Ha : ℓ ̸= c.

Tests that are reported by default by functions like summary, lincon, and contrast are for the two-sided
null hypothesis with c = 0 so that the hypotheses are H0 : βj = 0 versus Ha : βj ̸= 0 (as when using summary)
or H0 : ℓ = 0 versus Ha : ℓ ̸= 0 (as when using lincon or contrast).

Test Statistics

Assuming H0 is true, the test statistics

t = β̂j − βj

SE(β̂j)
and

t = ℓ̂ − ℓ

SE(ℓ̂)
have an approximate t distribution with n − p degrees of freedom (usually denoted as df in output, where p
is the number of βj parameters). Note that βj and ℓ are the values of these quantities hypothesized by the
null hypothesis.

P-Values

The p-value is the probability of a value of the test statistic as or more extreme than the observed value,
assuming H0 is true. What is as or more extreme is decided by Ha:

H0 : βj = c and Ha : βj ̸= c ⇒ p-value = P (|t| ≥ tobs|H0),

or
H0 : βj = c and Ha : βj > c ⇒ p-value = P (t ≥ tobs|H0),

or
H0 : βj = c and Ha : βj < c ⇒ p-value = P (t ≤ tobs|H0),
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where tobs is the observed/computed value of the t test statistic.

Note: Software typically produces the following: (a) a test with a null hypothesis where βj = 0 of ℓ = 0, and
(b) p-values only for two-sided/tailed tests. This is true of summary, lincon, and contrast. But the p-value
for a one-sided/tailed test can be obtained as half of the p-value for the two-sided/tailed test (assuming that
tobs) is in the direction hypothesized by Ha.

A composite null hypothesis such as

H0 : βj ≤ c and Ha : βj > c,

or
H0 : ℓ ≤ c and Ha : ℓ > c,

can be done by assuming the equality under the null (e.g., βj = c or ℓ = c), and interpreting the computed
p-value as the upper bound on the p-value.

Decision Rule

The decision rule for a significance test is always

p-value ≤ α ⇒ reject H0, p-value > α ⇒ do not reject H0,

for some specified significance level 0 < α < 1 (frequently α = 0.05).
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