
Wednesday, January 21

Example: The “data frame” trees comes with R. We can see it if we just type trees at the prompt in the
R console.
trees

Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7
7 11.0 66 15.6
8 11.0 75 18.2
9 11.1 80 22.6
10 11.2 75 19.9
11 11.3 79 24.2
12 11.4 76 21.0
13 11.4 76 21.4
14 11.7 69 21.3
15 12.0 75 19.1
16 12.9 74 22.2
17 12.9 85 33.8
18 13.3 86 27.4
19 13.7 71 25.7
20 13.8 64 24.9
21 14.0 78 34.5
22 14.2 80 31.7
23 14.5 74 36.3
24 16.0 72 38.3
25 16.3 77 42.6
26 17.3 81 55.4
27 17.5 82 55.7
28 17.9 80 58.3
29 18.0 80 51.5
30 18.0 80 51.0
31 20.6 87 77.0

Note that with R a “data frame” is a particular kind of object that is frequently used to store data.

Let’s specify the model
E(Vi) = β0 + β1gi + β2hi,

where Vi, gi, and hi are the volume, girth, and height from the i-th observation.
m <- lm(formula = Volume ~ Girth + Height, data = trees)

There’s a lot to say here.
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1. lm (linear model) is a function to which we have provided two arguments: formula and data. Other
arguments can be found using args(lm), some of which we will use later.
args(lm)

function (formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)

NULL

We do not need to name the arguments if we provide them in the same order as they are expected. For
example, this would also work:
m <- lm(Volume ~ Girth + Height, trees)

Just about all functions that estimate a regression model expect formula to be the first argument. A
common convention (and one that I use) is to name all arguments except the first:
m <- lm(Volume ~ Girth + Height, data = trees)

2. The formula argument is symbolic, not literal. It is a system for communicating with R the regression
model you want to specify. The model formula Volume ~ Girth + Height implies the statistical model
E(Vi) = β0 + β1gi + β2hi.

3. We have assigned the output of this function to an object called m (R is an object-oriented programming
language). Note that you can also use = instead of <-. We can apply other functions to this object. For
example, print(m).
print(m)

Call:
lm(formula = Volume ~ Girth + Height, data = trees)

Coefficients:
(Intercept) Girth Height

-57.9877 4.7082 0.3393

But if you just have m it will interpret that as print(m).
m

Call:
lm(formula = Volume ~ Girth + Height, data = trees)

Coefficients:
(Intercept) Girth Height

-57.9877 4.7082 0.3393

A bit more information can be extracted by using the summary function.
summary(m)

Call:
lm(formula = Volume ~ Girth + Height, data = trees)

Residuals:
Min 1Q Median 3Q Max

-6.4065 -2.6493 -0.2876 2.2003 8.4847

2



Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Girth 4.7082 0.2643 17.816 < 2e-16 ***
Height 0.3393 0.1302 2.607 0.0145 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16

In lecture I will often trim the output from summary using something like the following.
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9876589 8.6382259 -6.712913 2.749507e-07
Girth 4.7081605 0.2642646 17.816084 8.223304e-17
Height 0.3392512 0.1301512 2.606594 1.449097e-02

This shows estimates of the parameters β0, β1, and β2, and some other information concerning inferences
for those parameters (more on that later).

Example: Here are the data and a specified linear model for the study on dopamine activity in schizophrenics.
The data are available in the BSDA package.
library(BSDA) # install with install.packages("BSDA")
Dopamine

# A tibble: 25 x 2
dbh group

<int> <chr>
1 104 nonpsychotic
2 105 nonpsychotic
3 112 nonpsychotic
4 116 nonpsychotic
5 130 nonpsychotic
6 145 nonpsychotic
7 154 nonpsychotic
8 156 nonpsychotic
9 170 nonpsychotic

10 180 nonpsychotic
# i 15 more rows
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head(Dopamine)

# A tibble: 6 x 2
dbh group

<int> <chr>
1 104 nonpsychotic
2 105 nonpsychotic
3 112 nonpsychotic
4 116 nonpsychotic
5 130 nonpsychotic
6 145 nonpsychotic
tail(Dopamine)

# A tibble: 6 x 2
dbh group

<int> <chr>
1 226 psychotic
2 245 psychotic
3 270 psychotic
4 275 psychotic
5 306 psychotic
6 320 psychotic

Also you can try ?Dopamine or help(Dopamine) to see the help file (you can also do this for functions like
lm). A tibble is another way that data are stored in R that is mostly interchangeable with data frames
(they are effectively “enhanced” data frames).

Let’s specify a linear model using the lm function.
m <- lm(dbh ~ group, data = Dopamine)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 164.26667 12.58563 13.051923 4.058662e-12
grouppsychotic 78.33333 19.89963 3.936422 6.586761e-04

Note: The grouppsychotic tells us that an indicator variable was created for the level/category psychotic
for the categorical variable group. How would we write this model mathematically?

Example: Here are the data from the anorexia study.
library(MASS) # install with install.packages("MASS")
head(anorexia)

Treat Prewt Postwt
1 Cont 80.7 80.2
2 Cont 89.4 80.1
3 Cont 91.8 86.4
4 Cont 74.0 86.3
5 Cont 78.1 76.1
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6 Cont 88.3 78.1
summary(anorexia)

Treat Prewt Postwt
CBT :29 Min. :70.00 Min. : 71.30
Cont:26 1st Qu.:79.60 1st Qu.: 79.33
FT :17 Median :82.30 Median : 84.05

Mean :82.41 Mean : 85.17
3rd Qu.:86.00 3rd Qu.: 91.55
Max. :94.90 Max. :103.60

Here we are going to create another variable change which is the change in weight. (Note: I redefined change
from the original lecture as the post-weight minus the pre-weight so that a positive value indicates weight
gain and a negative value indicates weight loss.)
anorexia$change <- anorexia$Postwt - anorexia$Prewt
head(anorexia)

Treat Prewt Postwt change
1 Cont 80.7 80.2 -0.5
2 Cont 89.4 80.1 -9.3
3 Cont 91.8 86.4 -5.4
4 Cont 74.0 86.3 12.3
5 Cont 78.1 76.1 -2.0
6 Cont 88.3 78.1 -10.2

Let’s specify a linear model.
m <- lm(change ~ Treat, data = anorexia)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.006897 1.397996 2.150861 0.03499197
TreatCont -3.456897 2.033297 -1.700144 0.09360765
TreatFT 4.257809 2.299644 1.851508 0.06837576

What are the indicator variables? How would we write this model mathematically?

We can change the parameterization using relevel.
anorexia$Treat <- relevel(anorexia$Treat, ref = "Cont")
m <- lm(change ~ Treat, data = anorexia)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.450000 1.476449 -0.3047854 0.761447048

5



TreatCBT 3.456897 2.033297 1.7001438 0.093607652
TreatFT 7.714706 2.348163 3.2854224 0.001602338

What are the indicator variables? How would we write this model mathematically?

Note: We can change the parameterization for the model for the previous example, but we need to make
group a factor because the relevel function will only work on variables that are factors (although the
function lm automatically converts a character variable to a factor). We can see that it is not a factor (yet)
from summary and also from the is.factor function.
summary(Dopamine)

dbh group
Min. :104.0 Length:25
1st Qu.:150.0 Class :character
Median :200.0 Mode :character
Mean :195.6
3rd Qu.:230.0
Max. :320.0

is.factor(Dopamine$group)

[1] FALSE

Here’s what happens if you try to use relevel with the group variable.
Dopamine$group <- relevel(Dopamine$group, ref = "psychotic")

Error in `relevel.default()`:
! 'relevel' only for (unordered) factors

Let’s make group a factor and then change the parameterization.
Dopamine$group <- factor(Dopamine$group)
Dopamine$group <- relevel(Dopamine$group, ref = "psychotic")

Note that we could also have done this with one line of code.
Dopamine$group <- relevel(factor(Dopamine$group), ref = "psychotic")

Here’s the reparameterized model.
m <- lm(dbh ~ group, data = Dopamine)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 242.60000 15.41419 15.738750 8.320341e-14
groupnonpsychotic -78.33333 19.89963 -3.936422 6.586761e-04
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What is this model?

Here’s another parameterization. Including the term 0 or -1 in the model formula argument suppresses the
inclusion of the β0 parameter (again, it is symbolic, not literal).1

m <- lm(dbh ~ 0 + group, data = Dopamine)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
grouppsychotic 242.6000 15.41419 15.73875 8.320341e-14
groupnonpsychotic 164.2667 12.58563 13.05192 4.058662e-12

Let’s try that with the anorexia data.
m <- lm(change ~ 0 + Treat, data = anorexia)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
TreatCont -0.450000 1.476449 -0.3047854 0.7614470484
TreatCBT 3.006897 1.397996 2.1508614 0.0349919664
TreatFT 7.264706 1.825915 3.9786656 0.0001687833

What are these models?

Example: Sometimes we may also want so basic descriptive statistics. There are many ways to do this in R.
One flexible approach is to use the dplyr package.
library(dplyr) # install with install.packages("dplyr") or install.packages("tidyverse")
Dopamine |> group_by(group) |> summarize(dbh = mean(dbh))

# A tibble: 2 x 2
1When we say something like dbh ~ group this is actually translated as dbh ~ 1 + group where the “explanatory variable”

of 1 effectively becomes the term β0. Including this term is the default even if we do not mention it explicitly. But if we do not
want it then we “add” 0 or -1 to the model formula to remove it.
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group dbh
<fct> <dbl>

1 psychotic 243.
2 nonpsychotic 164.
anorexia |> mutate(change = Prewt - Postwt) |> group_by(Treat) |>

summarize(meanchange = mean(change), sdchange = sd(change), samplesize = n())

# A tibble: 3 x 4
Treat meanchange sdchange samplesize
<fct> <dbl> <dbl> <int>

1 Cont 0.450 7.99 26
2 CBT -3.01 7.31 29
3 FT -7.26 7.16 17

We could have used mutate to create the variable change for our analysis above.
anorexia <- anorexia |> mutate(change = Prewt - Postwt)
m <- lm(change ~ Treat, data = anorexia)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.450000 1.476449 0.3047854 0.761447048
TreatCBT -3.456897 2.033297 -1.7001438 0.093607652
TreatFT -7.714706 2.348163 -3.2854224 0.001602338

The dplyr and tidyr packages are very useful for manipulating and summarizing data. They have a bit of a
learning curve, but they are well worth learning. I will provide many examples of how they can be used.
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