Friday, January 16

Linear Models

The regression model
E(Y) = Bo+ piw1 + Paxa + - + B,

is a linear model because it is a linear function. But a linear model is linear in the parameters (i.e.,
Bos B1, - -, Pr) but not necessarily linear in the explanatory variables (i.e., 1,22, ..., x)). For example, the
following are all linear models even though E(Y') is not a linear function of the explanatory variable(s):

E(Y) = o+ pilog(z), E(Y)=fo+ iz + foa®, E(Y)=przizs.

Note that in some cases 3y can be omitted (or, equivalently, fixed as Sy = 0).
Why is there so much focus on linear models in statistics?

1. Easier to interpret.

2. Can sometimes approximate more complex functions.

3. Sufficient for categorical explanatory variables.

4. Inferential theory is simpler.

5. Computational tractability.

6. Didactic value.

So, we will start with linear models, but will certainly cover a variety of non-linear models.

Parameter Interpretation (Quantitative Explanatory Variables)
In the linear model
E(Y) = Bo+ frx1 + Paxa + - + Bk,
the parameter §; (for j > 0) represents the rate of change in E(Y) with respect to x; assuming all other x;

are held constant.

Example: Assume that
E(Y) = Bo + Biz1 + Pawa.

If z; is increased to x1 + 1, then

Bo + Bi(x1 + 1) + foxo = o + Prx1 + Poxs +61 = E(Y) + b,
E(Y)

meaning that E(Y) changes by 5 if 21 increases one unit. Note that in this interpretation it is assumed that
2o does not change when 1 changes, so 81 does not have the same interpretation in E(Y) = 8y 4 S121 unless
x1 and 9 are not correlated (e.g., if z1 represents a randomized treatment). Also we are not necessarily
assuming that this is a causal relationship in the sense that changing 1 causes a change in E(Y).

Note: From calculus we note that j3; is the partial derivative of E(Y) with respect to z;,

OEY) .
o,



which shows that the rate of change of E(Y") with respect to x; is constant.
Example: Suppose we have the model
E(V) = —57.99 4 0.34h + 4.71g,

where V represents tree volume (in cubic feet), and g and h denote tree girth (in) and height (ft), respectively.
If we were to plot E(V) as a function of both h and g then it would form a plane.

But three-dimensional plots can be difficult to read, and higher-dimensional plots are not practical. But
consider that we can still make a two-dimensional plot of we express F(V') as a function of one explanatory
variable while holding the other explanatory variable(s) constant. For example, we can write E(V) as a
function of only h for some chosen value of g as

E(V) = (—57.99 + 4.71g) +0.34h.
—_— ——
constant

Here I have set g equal to 9, 12, and 15 to plot E(V') as a function of h.
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Similarly we can write E(V') as a function of only g for some chosen value of h as

E(V) = (=57.99 + 0.34h) +4.71g.
| S —

constant

Here I have set h equal to 72, 76, and 80 to plot E(V) as a function of g.
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Note that in both cases the rate of change of E(V) with respect to one explanatory variable does not depend
on the value of itself or another variable.

But we need to be very careful about how we interpret parameters for other linear models.

Example: Suppose we have
E(Y) = Bo + Brz1 + Paza,

where ;1 = z and 22 = 22 so that we can also write the model as
E(Y) = By + prz + Ba”.

Then if we increase = by one unit to x + 1 we have the change in the expected response of

Bo+ Bi(z+1) + Ba(x+1)* — [Bo + iz + B2a”] = Bi + B2(2x + 1),

so the change depends on x. So the change in the expected response depends on the value of x.

Example: Suppose we have
E(Y) = Bo + Bi1x1 + Bawa + B33,

where x3 = x122. Then if we increase x1 by one unit we have a change in the expected response of
Bo + Bi(xy + 1) + Baza + Ba(x1 + 1)xs — [Bo + fra1 + Boxa + fzz122] = f1 + P3xa.

So the change in the expected response if we increase x1 depends on the value of xso.

Example: Suppose we have
E(Y) = Bo + f11ogy (),

where log, is the base-2 logarithm, and assuming that « > 0. Here f; is the change in E(Y) if we increase
log,(x) by one unit, not z. If we increase x by one unit we have a change in the expected response of

Bo + Bilogy(x + 1) — [Bo + B1logy ()] = logy(x 4 1) — logy(x).



So the change in the expected response if we increase x by one unit depends on the value of x. The above is
also true for any base of logarithm. But for log, we have that 31 is the change in E(Y) if we double x. That

is,
E(Y) = Bo + B11ogy(27) = Bo + B1logy(x) + P

We'll discuss log transformations later in the course.



Indicator Variables and Parameter Interpretation
Indicator (or “dummy”) variables can be used when an explanatory variable is categorical.

Example: Consider the following data from an observational study comparing the dopamine b-hydroxylase
activity of schizophrenic patients that had been classified as non-psychotic or psychotic after treatment.

Dopamine b—hydroxylase Activity by Symptoms
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Note: In an introductory statistics course, a so-called “population mean” (i) is what we would call an
expected value so that E(Y) = p.

Consider two hypothetical population means:

1ty = expected activity of psychotic patients

Ly, = expected activity of non-psychotic patients

Inferences might consider three quantities:

1. p, (expected activity for a psychotic patient)

2. pn (expected activity for a non-psychotic patient)

3. fip — o, (difference in expected activity between psychotic and non-psychotic patients)
Let x; be an indicator variable for psychotic schizophrenics such that

1, if the i-th subject is psychotic,
v {0, otherwise.

Then if we specify the model E(Y;) = By + S1x;, where Y; is the dopamine activity of the i-th subject, we
can also write the model case-wise as

B(Y;) = {60 + B1, if the i-th subject is psychotic,

Bo, if the i-th subject is non-psychotic.

Thus the quantities of interest are functions of 5y and fSy:



L pp = o+ B
2. anﬁo
3. pp — pn =P

The interpretion of the model parameters depends on how we define our indicator variable (i.e., the parame-
terization of the model). If instead we defined z; as

1, if the i-th subject is non-psychotic,
xr, =
‘ 0, otherwise,

then
Bo + (1, if the i-th subject is non-psychotic,

Bo, if the i-th subject is psychotic.

E(Y;) = {
and the quantities of interest become
L. up = PBo
2. pn = Po+ B

3. pp — pn = =51

Note: Usually, if we have a categorical explanatory variable with & levels, we need k — 1 indicator variables.
This is true if £y is in the model. But suppose we define

1, if the i-th subject is psychotic,
Ty =
" 0, otherwise,

1, if the i-th subject is non-psychotic,
Tip =
2 0, otherwise,

and we use the model E(Y;) = f1x;1 + Boxi2. How are B1 and S related to pp, pin, and py, — pn?

Example: Consider the following data from a randomized experiment that examined the weight change
between before and after therapy for subjects with anorexia.



Weight Change by Therapy Treatment Condition
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Let Y; denote weight change in the i-th subject. Each subject was assigned at random to one of three therapies
for anorexia: control, cognitive-behavioral, or family therapy. Suppose we define z;; and x;2 as

1, if i-th subject received cognitive-behavioral therapy,
€Ti =
. 0, otherwise,

and
1, if i-th subject received family therapy,

Tig =
2 {O, otherwise.

Then if we specify the model
E(Y;) = Bo + iz + Pazio,

we we can also write the model case-wise as

Bo, if the i-th subject is in the control group,
E(Y;) = { Bo + B1, if the i-th subject received CBT,
Bo + P2, if the i-th subject received FT.

What then might be some quantities of interest (in terms of 5o, 81, 52)?
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