Monday, January 13

Example: The “data frame” trees comes with R. We can see it if we just type trees at the prompt in the
R console.

trees

Girth Height Volume

1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7
7 11.0 66 15.6
8 11.0 75 18.2
9 11.1 80 22.6
10 11.2 75 19.9
11 11.3 79 24.2
12 11.4 76 21.0
13 11.4 76 21.4
14 11.7 69 21.3
15 12.0 75 19.1
16 12.9 74 22.2
17 12.9 856 33.8
18 13.3 86 27.4
19 13.7 71 25.7
20 13.8 64 24.9
21 14.0 78 34.5
22 14.2 80 31.7
23 14.5 74 36.3
24 16.0 72 38.3
26 16.3 7T 42.6
26 17.3 81 55.4
27 17.5 82 55.7
28 17.9 80 58.3
29 18.0 80 b51.5
30 18.0 80 51.0
31 20.6 87 77.0

Note that with R a “data frame” is a particular kind of object that is frequently used to store data.

Let’s specify the model
E(V;) = Bo + B1gi + Ba2hi,

where V;, g;, and h; are the volume, girth, and height from the i-th observation.

m <- Ilm(formula = Volume ~ Girth + Height, data = trees)

There’s a lot to say here.

1. 1m (linear model) is a function to which we have provided two arguments: formula and data. Other
arguments can be found using args (1m), some of which we will use later.

args(1m)

function (formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, ...)

NULL

We do not need to name the arguments if we provide them in the same order as they are expected. For
example, this would also work:

m <- 1m(Volume ~ Girth + Height, trees)

Just about all functions that estimate a regression model expect formula to be the first argument. A
common convention (and one that I use) is to name all arguments except the first:

m <- 1lm(Volume ~ Girth + Height, data = trees)

2. The formula argument is symbolic, not literal. It is a system for communicating with R the regression
model you want to specify. The model formula Volume ~ Girth + Height implies the statistical model

E(Vi) = Bo + B19i + B2hi.

3. We have assigned the output of this function to an object called m (R is an object-oriented programming
language). Note that you can also use = instead of <-. We can apply other functions to this object. For
example, print (m).

print (m)

Call:
Im(formula = Volume ~ Girth + Height, data = trees)

Coefficients:
(Intercept) Girth Height
-57.9877 4.7082 0.3393

But if you just have m it will interpret that as print (m).
m

Call:
Im(formula = Volume ~ Girth + Height, data = trees)

Coefficients:
(Intercept) Girth Height
-57.9877 4.7082 0.3393

A bit more information can be extracted by using the summary function.

summary (m)

Call:
Im(formula = Volume ~ Girth + Height, data = trees)

Residuals:
Min 1Q Median 3Q Max
-6.4065 -2.6493 -0.2876 2.2003 8.4847

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 *x*x

Girth 4.7082 0.2643 17.816 < 2e-16 **x*

Height 0.3393 0.1302 2.607 0.0145 *

Signif. codes: O '#*x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16

In lecture I will often trim the output from summary using something like the following.

summary (m) $coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) -57.9876589 8.6382259 -6.712913 2.749507e-07
Girth 4.7081605 0.2642646 17.816084 8.223304e-17
Height 0.3392512 0.1301512 2.606594 1.449097e-02

This shows estimates of the parameters 5y, 51, and (o, and some other information concerning inferences
for those parameters (more on that later).

Example: Here are the data and a specified linear model for the study on dopamine activity in schizophrenics.
The data are available in the BSDA package.

library(BSDA) # install with install.packages("BSDA")
Dopamine

A tibble: 25 x 2

© 00 ~NO O WN -

10

dbh group

<int> <chr>

104 nonpsychotic
105 nonpsychotic
112 nonpsychotic
116 nonpsychotic
130 nonpsychotic
145 nonpsychotic
154 nonpsychotic
156 nonpsychotic
170 nonpsychotic
180 nonpsychotic

i 15 more rows

head (Dopamine)

A tibble: 6 x 2
dbh group

<int> <chr>
104 nonpsychotic
105 nonpsychotic
112 nonpsychotic
116 nonpsychotic
130 nonpsychotic
145 nonpsychotic

O WN -

tail (Dopamine)

A tibble: 6 x 2
dbh group

<int> <chr>
226 psychotic
245 psychotic
270 psychotic
275 psychotic
306 psychotic
320 psychotic

O WN -

Also you can try ?Dopamine or help(Dopamine) to see the help file (you can also do this for functions like
1m). A tibble is another way that data are stored in R that is mostly interchangeable with data frames
(they are effectively “enhanced” data frames).

Let’s specify a linear model using the 1m function.

m <- 1m(dbh ~ group, data = Dopamine)
summary (m) $coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) 164.26667 12.58563 13.051923 4.058662e-12
grouppsychotic 78.33333 19.89963 3.936422 6.586761e-04

Note: The grouppsychotic tells us that an indicator variable was created for the level /category psychotic
for the categorical variable group. How would we write this model mathematically?

Example: Here are the data from the anorexia study.

library (MASS) # install with install.packages("MASS")
head (anorexia)

Treat Prewt Postwt

1 Cont 80.7 80.2
2 Cont 89.4 80.1
3 Cont 91.8 86.4
4 Cont 74.0 86.3
5 Cont 78.1 76.1

6 Cont 88.3 78.1

summary (anorexia)
Treat Prewt Postwt
CBT :29 Min. :70.00 Min. : 71.30

Cont:26 1st Qu.:79.60 1st Qu.: 79.33
FT :17 Median :82.30 Median : 84.05

Mean :82.41 Mean . 85.17
3rd Qu.:86.00 3rd Qu.: 91.55
Max. :94.90 Max. :103.60

Here we are going to create another variable change which is the change in weight. (Note: I redefined change
from the original lecture as the post-weight minus the pre-weight so that a positive value indicates weight
gain and a negative value indicates weight loss.)

anorexia$change <- anorexia$Postwt - anorexia$Prewt
head (anorexia)

Treat Prewt Postwt change

1 Cont 80.7 80.2 -0.5
2 Cont 89.4 80.1 -9.3
3 Cont 91.8 86.4 -5.4
4 Cont 74.0 86.3 12.3
5 Cont 78.1 76.1 -2.0
6 Cont 88.3 78.1 -10.2

Let’s specify a linear model.

m <- 1m(change ~ Treat, data = anorexia)
summary (m) $coefficients

Estimate Std. Error t value Pr(>lt])
(Intercept) 3.006897 1.397996 2.150861 0.03499197
TreatCont -3.456897 2.033297 -1.700144 0.09360765
TreatFT 4.,257809 2.299644 1.851508 0.06837576

What are the indicator variables? How would we write this model mathematically?

We can change the parameterization using relevel.

anorexia$Treat <- relevel (anorexia$Treat, ref = "Cont")
m <- lm(change ~ Treat, data = anorexia)
summary (m) $coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) -0.450000 1.476449 -0.3047854 0.761447048

TreatCBT 3.456897 2.033297 1.7001438 0.093607652
TreatFT 7.714706 2.348163 3.2854224 0.001602338

What are the indicator variables? How would we write this model mathematically?

Note: We can change the parameterization for the model for the previous example, but we need to make
group a factor because the relevel function will only work on variables that are factors (although the
function 1m automatically converts a character variable to a factor). We can see that it is not a factor (yet)
from summary and also from the is.factor function.

summary (Dopamine)
dbh group

Min. :104.0 Length:25

1st Qu.:150.0 Class :character
Median :200.0 Mode :character
Mean :195.6

3rd Qu.:230.0

Max. :320.0

is.factor(Dopamine$group)

[1] FALSE

Here’s what happens if you try to use relevel with the group variable.

Dopamine$group <- relevel(Dopamine$group, ref = "psychotic")

Error in relevel.default(Dopamine$group, ref = "psychotic"): 'relevel' only for (unordered) factors

Let’s make group a factor and then change the parameterization.

Dopamine$group <- factor (Dopamine$group)
Dopamine$group <- relevel(Dopamine$group, ref = "psychotic")

Note that we could also have done this with one line of code.

Dopamine$group <- relevel(factor(Dopamine$group), ref = "psychotic")

Here’s the reparameterized model.

m <- 1m(dbh ~ group, data = Dopamine)
summary (m) $coefficients

Estimate Std. Error t value Pr(>ltl)
(Intercept) 242.60000 15.41419 15.738750 8.320341e-14
groupnonpsychotic -78.33333 19.89963 -3.936422 6.586761e-04

What is this model?

Here’s another parameterization. Including the term -1 in the model formula argument suppresses the
inclusion of the By parameter (again, it is symbolic, not literal).!

m <- 1lm(dbh ~ -1 + group, data = Dopamine)

summary (m) $coefficients

Estimate Std. Error t value Pr(>[tl)
grouppsychotic 242.6000 15.41419 15.73875 8.320341e-14
groupnonpsychotic 164.2667 12.58563 13.05192 4.058662e-12

Let’s try that with the anorexia data.

m <- lm(change ~ -1 + Treat, data = anorexia)
summary (m) $coefficients

Estimate Std. Error t value Pr(>ltl)
TreatCont -0.450000 1.476449 -0.3047854 0.7614470484
TreatCBT 3.006897 1.397996 2.1508614 0.0349919664
TreatFT T7.264706 1.825915 3.9786656 0.0001687833

What are these models?

Example: Sometimes we may also want so basic descriptive statistics. There are many ways to do this in R.
One flexible approach is to use the dplyr package.

library(dplyr) # install with install.packages("dplyr") or install.packages("tidyverse")
Dopamine |> group_by(group) |> summarize(dbh = mean(dbh))

A tibble: 2 x 2

group dbh
<fct> <dbl>
1 psychotic 243.

2 nonpsychotic 164.

anorexia |> mutate(change = Prewt - Postwt) |> group_by(Treat) [>
summarize (meanchange = mean(change), sdchange = sd(change), samplesize = n())

A tibble: 3 x 4
Treat meanchange sdchange samplesize

<fct> <dbl> <dbl> <int>
1 Cont 0.450 7.99 26
2 CBT -3.01 7.31 29
3 FT -7.26 7.16 17

"When we say something like dbh ~ group this is actually translated as dbh ~ 1 + group where the “explanatory variable”
of 1 effectively becomes the term Bp. Including this term is the default even if we do not mention it explicitly. But if we do not
want it then we “add” -1 to the model formula to remove it.

We could have used mutate to create the variable change for our analysis above.

anorexia <- anorexia |> mutate(change = Prewt - Postwt)
m <- lm(change ~ Treat, data = anorexia)
summary (m) $coefficients

Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.450000 1.476449 0.3047854 0.761447048
TreatCBT -3.456897 2.033297 -1.7001438 0.093607652
TreatFT =7.714706 2.348163 -3.2854224 0.001602338

The dplyr and tidyr packages are very useful for manipulating and summarizing data. They have a bit of a
learning curve, but they are well worth learning. I will provide many examples of how they can be used.

