Monday, January 13

Example: The "data frame" **trees** comes with R. We can see it if we just type **trees** at the prompt in the R console.

trees

	${\tt Girth}$	Height	Volume
1	8.3	70	10.3
2	8.6	65	10.3
3	8.8	63	10.2
4	10.5	72	16.4
5	10.7	81	18.8
6	10.8	83	19.7
7	11.0	66	15.6
8	11.0	75	18.2
9	11.1	80	22.6
10	11.2	75	19.9
11	11.3	79	24.2
12	11.4	76	21.0
13	11.4	76	21.4
14	11.7	69	21.3
15	12.0	75	19.1
16	12.9	74	22.2
17	12.9	85	33.8
18	13.3	86	27.4
19	13.7	71	25.7
20	13.8	64	24.9
21	14.0	78	34.5
22	14.2	80	31.7
23	14.5	74	36.3
24	16.0	72	38.3
25	16.3	77	42.6
26	17.3	81	55.4
27	17.5	82	55.7
28	17.9	80	58.3
29	18.0	80	51.5
30	18.0	80	51.0
31	20.6	87	77.0

Note that with R a "data frame" is a particular kind of object that is frequently used to store data. Let's specify the model

 $E(V_i) = \beta_0 + \beta_1 g_i + \beta_2 h_i,$

where V_i , g_i , and h_i are the volume, girth, and height from the *i*-th observation.

m <- lm(formula = Volume ~ Girth + Height, data = trees)</pre>

There's a lot to say here.

1. lm (linear model) is a *function* to which we have provided two *arguments*: formula and data. Other arguments can be found using args(lm), some of which we will use later.

args(lm)

```
function (formula, data, subset, weights, na.action, method = "qr",
    model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
    contrasts = NULL, offset, ...)
NULL
```

We do not need to name the arguments *if we provide them in the same order as they are expected*. For example, this would also work:

m <- lm(Volume ~ Girth + Height, trees)</pre>

Just about all functions that estimate a regression model expect formula to be the first argument. A common convention (and one that I use) is to name all arguments except the first:

m <- lm(Volume ~ Girth + Height, data = trees)</pre>

- 2. The formula argument is symbolic, not literal. It is a system for communicating with R the regression model you want to specify. The model formula Volume ~ Girth + Height implies the statistical model $E(V_i) = \beta_0 + \beta_1 g_i + \beta_2 h_i$.
- 3. We have assigned the output of this function to an *object* called m (R is an *object-oriented* programming language). Note that you can also use = instead of <-. We can apply other functions to this object. For example, print(m).

```
print(m)
```

```
Call:

lm(formula = Volume ~ Girth + Height, data = trees)

Coefficients:

(Intercept) Girth Height

-57.9877 4.7082 0.3393

But if you just have m it will interpret that as print(m).
```

```
ш
```

```
Call:

lm(formula = Volume ~ Girth + Height, data = trees)

Coefficients:

(Intercept) Girth Height

-57.9877 4.7082 0.3393
```

A bit more information can be extracted by using the summary function.

```
summary(m)
```

Call: lm(formula = Volume ~ Girth + Height, data = trees) Residuals: Min 1Q Median 3Q Max -6.4065 -2.6493 -0.2876 2.2003 8.4847 Coefficients: Estimate Std. Error t value Pr(>|t|) 8.6382 -6.713 2.75e-07 *** (Intercept) -57.9877 Girth 4.7082 0.2643 17.816 < 2e-16 *** Height 0.3393 0.1302 2.607 0.0145 * ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.882 on 28 degrees of freedom Multiple R-squared: 0.948, Adjusted R-squared: 0.9442 255 on 2 and 28 DF, p-value: < 2.2e-16 F-statistic: In lecture I will often trim the output from summary using something like the following. summary(m)\$coefficients

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-57.9876589	8.6382259	-6.712913	2.749507e-07
Girth	4.7081605	0.2642646	17.816084	8.223304e-17
Height	0.3392512	0.1301512	2.606594	1.449097e-02

This shows estimates of the parameters β_0 , β_1 , and β_2 , and some other information concerning inferences for those parameters (more on that later).

Example: Here are the data and a specified linear model for the study on dopamine activity in schizophrenics. The data are available in the **BSDA** package.

```
library(BSDA) # install with install.packages("BSDA")
Dopamine
```

```
# A tibble: 25 x 2
     dbh group
   <int> <chr>
 1
     104 nonpsychotic
 2
     105 nonpsychotic
     112 nonpsychotic
 3
 4
     116 nonpsychotic
 5
     130 nonpsychotic
 6
     145 nonpsychotic
 7
     154 nonpsychotic
8
     156 nonpsychotic
9
     170 nonpsychotic
10
     180 nonpsychotic
# i 15 more rows
```

head(Dopamine)

#	А	tibb	ole: 6 x 2
		dbh	group
	<j< td=""><td>int></td><td><chr></chr></td></j<>	int>	<chr></chr>
1		104	nonpsychotic
2		105	nonpsychotic
3		112	nonpsychotic
4		116	nonpsychotic
5		130	nonpsychotic
6		145	nonpsychotic
ta	i]	(Dop	pamine)
#	A	tibb	ole: 6 x 2
		dbh	group
	<j< td=""><td>int></td><td><chr></chr></td></j<>	int>	<chr></chr>
1		226	psychotic
2		245	psychotic
3		270	psychotic
4		275	psychotic
5		306	psychotic
6		320	psychotic

Also you can try ?Dopamine or help(Dopamine) to see the help file (you can also do this for functions like lm). A tibble is another way that data are stored in R that is mostly interchangeable with data frames (they are effectively "enhanced" data frames).

Let's specify a linear model using the lm function.

```
m <- lm(dbh ~ group, data = Dopamine)
summary(m)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 164.26667 12.58563 13.051923 4.058662e-12
```

grouppsychotic 78.33333 19.89963 3.936422 6.586761e-04

Note: The grouppsychotic tells us that an indicator variable was created for the level/category psychotic for the categorical variable group. How would we write this model *mathematically*?

Example: Here are the data from the anorexia study.

library(MASS) # install with install.packages("MASS")
head(anorexia)

Treat Prewt Postwt 1 Cont 80.7 80.2 2 Cont 89.4 80.1 3 Cont 91.8 86.4 4 Cont 74.0 86.3 5 Cont 78.1 76.1 6 Cont 88.3 78.1

summary(anorexia)

Treat		Prewt		Postwt		
CBT	:29	Min.	:70.00	Min.	:	71.30
Cont:26		1st Qu.	:79.60	1st Qu.	:	79.33
FT :17		Median	:82.30	Median	:	84.05
		Mean	:82.41	Mean	:	85.17
		3rd Qu.	:86.00	3rd Qu.	:	91.55
		Max.	:94.90	Max.	::	103.60

Here we are going to create another variable **change** which is the change in weight. (Note: I redefined **change** from the original lecture as the post-weight minus the pre-weight so that a positive value indicates weight gain and a negative value indicates weight loss.)

anorexia\$change <- anorexia\$Postwt - anorexia\$Prewt
head(anorexia)</pre>

Treat Prewt Postwt change 80.2 -0.5 1 Cont 80.7 2 Cont 89.4 80.1 -9.3 3 Cont 91.8 86.4 -5.44 Cont 74.0 86.3 12.3 5 Cont 78.1 76.1 -2.0 6 Cont 88.3 78.1 -10.2

Let's specify a linear model.

```
m <- lm(change ~ Treat, data = anorexia)
summary(m)$coefficients</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.006897	1.397996	2.150861	0.03499197
TreatCont	-3.456897	2.033297	-1.700144	0.09360765
TreatFT	4.257809	2.299644	1.851508	0.06837576

What are the indicator variables? How would we write this model mathematically?

We can change the parameterization using relevel.

anorexia\$Treat <- relevel(anorexia\$Treat, ref = "Cont")
m <- lm(change ~ Treat, data = anorexia)
summary(m)\$coefficients</pre>

Estimate Std. Error t value Pr(>|t|) (Intercept) -0.450000 1.476449 -0.3047854 0.761447048

TreatCBT	3.456897	2.033297	1.7001438	0.093607652
TreatFT	7.714706	2.348163	3.2854224	0.001602338

What are the indicator variables? How would we write this model mathematically?

Note: We can change the parameterization for the model for the previous example, but we need to make group a *factor* because the **relevel** function will only work on variables that are factors (although the function lm automatically converts a character variable to a factor). We can see that it is not a factor (yet) from summary and also from the is.factor function.

summary(Dopamine)

```
        dbh
        group

        Min.
        :104.0
        Length:25

        1st Qu.:150.0
        Class :character

        Median :200.0
        Mode :character

        Mean :195.6
        3rd Qu.:230.0

        Max.
        :320.0
```

```
is.factor(Dopamine$group)
```

[1] FALSE

Here's what happens if you try to use relevel with the group variable.

Dopamine\$group <- relevel(Dopamine\$group, ref = "psychotic")</pre>

Error in relevel.default(Dopamine\$group, ref = "psychotic"): 'relevel' only for (unordered) factors

Let's make group a factor and then change the parameterization.

```
Dopamine$group <- factor(Dopamine$group)
Dopamine$group <- relevel(Dopamine$group, ref = "psychotic")</pre>
```

Note that we could also have done this with one line of code.

```
Dopamine$group <- relevel(factor(Dopamine$group), ref = "psychotic")</pre>
```

Here's the reparameterized model.

```
m <- lm(dbh ~ group, data = Dopamine)
summary(m)$coefficients</pre>
```

Estimate Std. Errort valuePr(>|t|)(Intercept)242.6000015.4141915.7387508.320341e-14groupnonpsychotic-78.3333319.89963-3.9364226.586761e-04

What is this model?

Here's another parameterization. Including the term -1 in the model formula argument suppresses the inclusion of the β_0 parameter (again, it is symbolic, not literal).¹

m <- lm(dbh ~ -1 + group, data = Dopamine)
summary(m)\$coefficients</pre>

Estimate Std. Error t valuePr(>|t|)grouppsychotic242.600015.4141915.738758.320341e-14groupnonpsychotic164.266712.5856313.051924.058662e-12

Let's try that with the anorexia data.

```
m <- lm(change ~ -1 + Treat, data = anorexia)
summary(m)$coefficients</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
TreatCont	-0.450000	1.476449	-0.3047854	0.7614470484
TreatCBT	3.006897	1.397996	2.1508614	0.0349919664
TreatFT	7.264706	1.825915	3.9786656	0.0001687833

What are these models?

Example: Sometimes we may also want so basic descriptive statistics. There are *many* ways to do this in R. One flexible approach is to use the **dplyr** package.

```
library(dplyr) # install with install.packages("dplyr") or install.packages("tidyverse")
Dopamine |> group_by(group) |> summarize(dbh = mean(dbh))
```

#	A tibble:	2 x 2						
	group	dbh						
	<fct></fct>	<dbl></dbl>						
1	psychotic	243.						
2	nonpsychot	cic 164.						
ar	norexia > summarize(mutate(c (meanchan	hange = Pre ge = mean (c	ewt - Postwt change), sdc) <mark> > group</mark> hange = sd	<pre>by(Treat l(change),</pre>) > samplesi	ze = n())
#	A tibble: Treat mean	3 x 4 nchange s	dchange sam	plesize				
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>				
1	Cont	0.450	7.99	26				
2	CBT	-3.01	7.31	29				
3	FT	-7.26	7.16	17				

¹When we say something like dbh ~ group this is actually translated as dbh ~ 1 + group where the "explanatory variable" of 1 effectively becomes the term β_0 . Including this term is the default even if we do not mention it explicitly. But if we do not want it then we "add" -1 to the model formula to remove it.

We could have used mutate to create the variable change for our analysis above.

```
anorexia <- anorexia |> mutate(change = Prewt - Postwt)
m <- lm(change ~ Treat, data = anorexia)
summary(m)$coefficients</pre>
```

Estimate Std. Errort valuePr(>|t|)(Intercept)0.4500001.4764490.30478540.761447048TreatCBT-3.4568972.033297-1.70014380.093607652TreatFT-7.7147062.348163-3.28542240.001602338

The **dplyr** and **tidyr** packages are very useful for manipulating and summarizing data. They have a bit of a learning curve, but they are well worth learning. I will provide many examples of how they can be used.