
Friday, January 10

Linear Models
The regression model

E(Y ) = β0 + β1x1 + β2x2 + · · · + βkxk,

is a linear model because it is a linear function. But a linear model is linear in the parameters (i.e.,
β0, β1, . . . , βk) but not necessarily linear in the explanatory variables (i.e., x1, x2, . . . , xk). For example, the
following are all linear models even though E(Y ) is not a linear function of the explanatory variable(s):

E(Y ) = β0 + β1 log(x), E(Y ) = β0 + β1x + β2x2, E(Y ) = β1x1x2.

Note that in some cases β0 can be omitted (or, equivalently, fixed as β0 = 0).

Why is there so much focus on linear models in statistics?

1. Easier to interpret.

2. Can sometimes approximate more complex functions.

3. Sufficient for categorical explanatory variables.

4. Inferential theory is simpler.

5. Computational tractability.

6. Didactic value.

So, we will start with linear models, but will certainly cover a variety of non-linear models.

Parameter Interpretation (Quantitative Explanatory Variables)
In the linear model

E(Y ) = β0 + β1x1 + β2x2 + · · · + βkxk,

the parameter βj (for j > 0) represents the rate of change in E(Y ) with respect to xj assuming all other xj

are held constant.

Example: Assume that
E(Y ) = β0 + β1x1 + β2x2.

If x1 is increased to x1 + 1, then

β0 + β1(x1 + 1) + β2x2 = β0 + β1x1 + β2x2︸ ︷︷ ︸
E(Y )

+β1 = E(Y ) + β1,

meaning that E(Y ) changes by β1 if x1 increases one unit. Note that in this interpretation it is assumed that
x2 does not change when x1 changes, so β1 does not have the same interpretation in E(Y ) = β0 + β1x1 unless
x1 and x2 are not correlated (e.g., if x1 represents a randomized treatment). Also we are not necessarily
assuming that this is a causal relationship in the sense that changing x1 causes a change in E(Y ).

Note: From calculus we note that βj is the partial derivative of E(Y ) with respect to xj ,

∂E(Y )
∂xj

= βj ,
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which shows that the rate of change of E(Y ) with respect to xj is constant.

Example: Suppose we have the model

E(V ) = −57.99 + 0.34h + 4.71g,

where V represents tree volume (in cubic feet), and g and h denote tree girth (in) and height (ft), respectively.
If we were to plot E(V ) as a function of both h and g then it would form a plane.
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But three-dimensional plots can be difficult to read, and higher-dimensional plots are not practical. But
consider that we can still make a two-dimensional plot of we express E(V ) as a function of one explanatory
variable while holding the other explanatory variable(s) constant. For example, we can write E(V ) as a
function of only h for some chosen value of g as

E(V ) = (−57.99 + 4.71g)︸ ︷︷ ︸
constant

+0.34h.

Here I have set g equal to 9, 12, and 15 to plot E(V ) as a function of h.
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Similarly we can write E(V ) as a function of only g for some chosen value of h as

E(V ) = (−57.99 + 0.34h)︸ ︷︷ ︸
constant

+4.71g.

Here I have set h equal to 72, 76, and 80 to plot E(V ) as a function of g.
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Note that in both cases the rate of change of E(V ) with respect to one explanatory variable does not depend
on the value of itself or another variable.

Example: Suppose we have
E(Y ) = β0 + β1x1 + β2x2,

where x1 = x and x2 = x2 so that we can also write the model as

E(Y ) = β0 + β1x + βx2.

Then if we increase x by one unit to x + 1 we have the change in the expected response of

β0 + β1(x + 1) + β2(x + 1)2 − [β0 + β1x + β2x2] = β1 + β2(2x + 1),

so the change depends on x. So the change in the expected response depends on the value of x.

Example: Suppose we have
E(Y ) = β0 + β1x1 + β2x2 + β3x3,

where x3 = x1x2. Then if we increase x1 by one unit we have a change in the expected response of

β0 + β1(x1 + 1) + β2x2 + β3(x1 + 1)x2 − [β0 + β1x1 + β2x2 + β3x1x2] = β1 + β3x2.

So the change in the expected response if we increase x1 depends on the value of x2.

Example: Suppose we have
E(Y ) = β0 + β1 log2(x),

where log2 is the base-2 logarithm. Here β1 is the change in E(Y ) if we increase log2(x) by one unit, not x.
If we increase x by one unit we have a change in the expected response of

β0 + β1 log2(x + 1) − [β0 + β1 log2(x)] = log2(x + 1) − log2(x),

or log2(1 + 1/x) if x > 0. So the change in the expected response if we increase x by one unit depends on the
value of x. The above is also true for any base of logarithm. But for log2 we have that β1 is the change in
E(Y ) if we double x. That is,

E(Y ) = β0 + β1 log2(2x) = β0 + β1 log2(x) + β1.

We’ll discuss log transformations later in the course.
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Indicator Variables and Parameter Interpretation
Indicator (or “dummy”) variables can be used when an explanatory variable is categorical.

Example: Consider the following data from an observational study comparing the dopamine b-hydroxylase
activity of schizophrenic patients that had been classified as non-psychotic or psychotic after treatment.
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Note: In an introductory statistics course, a so-called “population mean” (µ) is what we would call an
expected value so that E(Y ) = µ.

Consider two hypothetical population means:

µp = expected activity of psychotic patients
µn = expected activity of non-psychotic patients

Inferences might consider three quantities:

1. µp (expected activity for a psychotic patient)

2. µn (expected activity for a non-psychotic patient)

3. µp − µn (difference in expected activity between psychotic and non-psychotic patients)

Let xi be an indicator variable for psychotic schizophrenics such that

xi =
{

1, if the i-th subject is psychotic,
0, otherwise.

Then if we specify the model E(Yi) = β0 + β1xi, where Yi is the dopamine activity of the i-th subject, we
can also write the model case-wise as

E(Yi) =
{

β0 + β1, if the i-th subject is psychotic,
β0, if the i-th subject is non-psychotic.

Thus the quantities of interest are functions of β0 and β1:
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1. µp = β0 + β1

2. µn = β0

3. µp − µn = β1

The interpretion of the model parameters depends on how we define our indicator variable (i.e., the parame-
terization of the model). If instead we defined xi as

xi =
{

1, if the i-th subject is non-psychotic,
0, otherwise,

then

E(Yi) =
{

β0 + β1, if the i-th subject is non-psychotic,
β0, if the i-th subject is psychotic.

and the quantities of interest become

1. µp = β0

2. µn = β0 + β1

3. µp − µn = −β1

Note: Usually, if we have a categorical explanatory variable with k levels, we need k − 1 indicator variables.
This is true if β0 is in the model. But suppose we define

xi1 =
{

1, if the i-th subject is psychotic,
0, otherwise,

xi2 =
{

1, if the i-th subject is non-psychotic,
0, otherwise,

and we use the model E(Yi) = β1xi1 + β2xi2. How are β1 and β2 related to µp, µn, and µp − µn?

Example: Consider the following data from a randomized experiment that examined the weight change
between before and after therapy for subjects with anorexia.
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Let Yi denote weight change in the i-th subject. Each subject was assigned at random to one of three therapies
for anorexia: control, cognitive-behavioral, or family therapy. Suppose we define xi1 and xi2 as

xi1 =
{

1, if i-th subject received cognitive-behavioral therapy,
0, otherwise,

and

xi2 =
{

1, if i-th subject received family therapy,
0, otherwise.

Then if we specify the model
E(Yi) = β0 + β1xi1 + β2xi2,

we we can also write the model case-wise as

E(Yi) =


β0, if the i-th subject is in the control group,

β0 + β1, if the i-th subject received CBT,

β0 + β2, if the i-th subject received FT.

What then might be some quantities of interest (in terms of β0, β1, β2)?

7


	Linear Models
	Parameter Interpretation (Quantitative Explanatory Variables)
	Indicator Variables and Parameter Interpretation

