Friday, January 10

Linear Models

The regression model

 $E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$

is a *linear model* because it is a *linear function*. But a linear model is *linear in the parameters* (i.e., $\beta_0, \beta_1, \ldots, \beta_k$ but not necessarily *linear in the explanatory variables* (i.e., x_1, x_2, \ldots, x_k). For example, the following are all *linear models* even though $E(Y)$ is not a linear function of the explanatory variable(s):

$$
E(Y) = \beta_0 + \beta_1 \log(x), \quad E(Y) = \beta_0 + \beta_1 x + \beta_2 x^2, \quad E(Y) = \beta_1 x_1 x_2.
$$

Note that in some cases β_0 can be omitted (or, equivalently, fixed as $\beta_0 = 0$).

Why is there so much focus on *linear* models in statistics?

- 1. Easier to interpret.
- 2. Can sometimes approximate more complex functions.
- 3. Sufficient for categorical explanatory variables.
- 4. Inferential theory is simpler.
- 5. Computational tractability.
- 6. Didactic value.

So, we will start with linear models, but will certainly cover a variety of non-linear models.

Parameter Interpretation (Quantitative Explanatory Variables)

In the linear model

$$
E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k,
$$

the parameter β_j (for $j > 0$) represents the *rate of change* in $E(Y)$ with respect to x_j *assuming all other* x_j *are held constant*.

Example: Assume that

$$
E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2.
$$

If x_1 is increased to $x_1 + 1$, then

$$
\beta_0 + \beta_1(x_1 + 1) + \beta_2 x_2 = \underbrace{\beta_0 + \beta_1 x_1 + \beta_2 x_2}_{E(Y)} + \beta_1 = E(Y) + \beta_1,
$$

meaning that $E(Y)$ changes by β_1 if x_1 increases one unit. Note that in this interpretation it is assumed that *x*₂ *does not change* when *x*₁ changes, so β_1 does not have the same interpretation in $E(Y) = \beta_0 + \beta_1 x_1$ unless x_1 and x_2 are not correlated (e.g., if x_1 represents a randomized treatment). Also we are not necessarily assuming that this is a *causal* relationship in the sense that changing x_1 *causes* a change in $E(Y)$.

Note: From calculus we note that β_j is the partial derivative of $E(Y)$ with respect to x_j ,

$$
\frac{\partial E(Y)}{\partial x_j} = \beta_j,
$$

which shows that the rate of change of $E(Y)$ with respect to x_j is *constant*.

Example: Suppose we have the model

$$
E(V) = -57.99 + 0.34h + 4.71g,
$$

where *V* represents tree volume (in cubic feet), and *g* and *h* denote tree girth (in) and height (ft), respectively. If we were to plot $E(V)$ as a function of both *h* and *g* then it would form a *plane*.

But three-dimensional plots can be difficult to read, and higher-dimensional plots are not practical. But consider that we can still make a two-dimensional plot of we express $E(V)$ as a function of one explanatory variable *while holding the other explanatory variable(s) constant.* For example, we can write $E(V)$ as a function of only *h for some chosen value of g* as

$$
E(V) = \underbrace{(-57.99 + 4.71g)}_{\text{constant}} + 0.34h.
$$

Here I have set g equal to 9, 12, and 15 to plot $E(V)$ as a function of h .

Similarly we can write $E(V)$ as a function of only *g for some chosen value of h* as

$$
E(V) = \underbrace{(-57.99 + 0.34h)}_{\text{constant}} + 4.71g.
$$

Here I have set h equal to 72, 76, and 80 to plot $E(V)$ as a function of g .

Note that in both cases the *rate of change* of *E*(*V*) with respect to one explanatory variable *does not depend on the value of itself or another variable*.

Example: Suppose we have

$$
E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2,
$$

where $x_1 = x$ and $x_2 = x^2$ so that we can also write the model as

$$
E(Y) = \beta_0 + \beta_1 x + \beta x^2.
$$

Then if we increase x by one unit to $x + 1$ we have the change in the expected response of

$$
\beta_0 + \beta_1(x+1) + \beta_2(x+1)^2 - [\beta_0 + \beta_1 x + \beta_2 x^2] = \beta_1 + \beta_2(2x+1),
$$

so the change depends on *x*. So the change in the expected response *depends on the value of x*.

Example: Suppose we have

$$
E(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3,
$$

where $x_3 = x_1 x_2$. Then if we increase x_1 by one unit we have a change in the expected response of

$$
\beta_0 + \beta_1(x_1 + 1) + \beta_2x_2 + \beta_3(x_1 + 1)x_2 - [\beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_1x_2] = \beta_1 + \beta_3x_2.
$$

So the change in the expected response if we increase x_1 depends on the value of x_2 .

Example: Suppose we have

$$
E(Y) = \beta_0 + \beta_1 \log_2(x),
$$

where \log_2 is the base-2 logarithm. Here β_1 is the change in $E(Y)$ if we increase $\log_2(x)$ by one unit, not *x*. If we increase *x* by one unit we have a change in the expected response of

$$
\beta_0 + \beta_1 \log_2(x+1) - [\beta_0 + \beta_1 \log_2(x)] = \log_2(x+1) - \log_2(x),
$$

or $\log_2(1+1/x)$ if $x > 0$. So the change in the expected response if we increase x by one unit *depends on the value of x*. The above is also true for any base of logarithm. But for log₂ we have that β_1 is the change in $E(Y)$ if we *double x*. That is,

$$
E(Y) = \beta_0 + \beta_1 \log_2(2x) = \beta_0 + \beta_1 \log_2(x) + \beta_1.
$$

We'll discuss log transformations later in the course.

Indicator Variables and Parameter Interpretation

Indicator (or "dummy") variables can be used when an explanatory variable is *categorical*.

Example: Consider the following data from an observational study comparing the dopamine b-hydroxylase activity of schizophrenic patients that had been classified as non-psychotic or psychotic after treatment.

Dopamine b−hydroxylase Activity by Symptoms

Note: In an introductory statistics course, a so-called "population mean" (μ) is what we would call an expected value so that $E(Y) = \mu$.

Consider two hypothetical population means:

 μ_p = expected activity of psychotic patients μ_n = expected activity of non-psychotic patients

Inferences might consider three quantities:

- 1. μ_p (expected activity for a psychotic patient)
- 2. μ_n (expected activity for a non-psychotic patient)
- 3. $\mu_p \mu_n$ (difference in expected activity between psychotic and non-psychotic patients)

Let x_i be an *indicator variable* for *psychotic* schizophrenics such that

$$
x_i = \begin{cases} 1, & \text{if the } i\text{-th subject is psychiatric,} \\ 0, & \text{otherwise.} \end{cases}
$$

Then if we specify the model $E(Y_i) = \beta_0 + \beta_1 x_i$, where Y_i is the dopamine activity of the *i*-th subject, we can also write the model *case-wise* as

$$
E(Y_i) = \begin{cases} \beta_0 + \beta_1, & \text{if the } i\text{-th subject is psychiatric,} \\ \beta_0, & \text{if the } i\text{-th subject is non-psychotic.} \end{cases}
$$

Thus the quantities of interest are *functions* of β_0 and β_1 :

1.
$$
\mu_p = \beta_0 + \beta_1
$$

\n2. $\mu_n = \beta_0$
\n3. $\mu_p - \mu_n = \beta_1$

The interpretion of the model parameters depends on how we define our indicator variable (i.e., the *parameterization* of the model). If instead we defined x_i as

$$
x_i = \begin{cases} 1, & \text{if the } i\text{-th subject is non-psychotic,} \\ 0, & \text{otherwise,} \end{cases}
$$

then

$$
E(Y_i) = \begin{cases} \beta_0 + \beta_1, & \text{if the } i\text{-th subject is non-psychotic,} \\ \beta_0, & \text{if the } i\text{-th subject is psychotic.} \end{cases}
$$

and the quantities of interest become

1.
$$
\mu_p = \beta_0
$$

\n2. $\mu_n = \beta_0 + \beta_1$
\n3. $\mu_p - \mu_n = -\beta_1$

Note: Usually, if we have a categorical explanatory variable with *k* levels, we need *k* − 1 indicator variables. This is true if β_0 is in the model. But suppose we define

$$
x_{i1} = \begin{cases} 1, & \text{if the } i\text{-th subject is psychotic,} \\ 0, & \text{otherwise,} \end{cases}
$$

$$
x_{i2} = \begin{cases} 1, & \text{if the } i\text{-th subject is non-psychotic,} \\ 0, & \text{otherwise,} \end{cases}
$$

and we use the model $E(Y_i) = \beta_1 x_{i1} + \beta_2 x_{i2}$. How are β_1 and β_2 related to μ_p , μ_n , and $\mu_p - \mu_n$?

Example: Consider the following data from a randomized experiment that examined the weight change between before and after therapy for subjects with anorexia.

Let Y_i denote weight change in the *i*-th subject. Each subject was assigned at random to one of three therapies for anorexia: *control, cognitive-behavioral*, or *family therapy*. Suppose we define x_{i1} and x_{i2} as

$$
x_{i1} = \begin{cases} 1, & \text{if } i\text{-th subject received cognitive-behavioural therapy,} \\ 0, & \text{otherwise,} \end{cases}
$$

and

$$
x_{i2} = \begin{cases} 1, & \text{if } i\text{-th subject received family therapy,} \\ 0, & \text{otherwise.} \end{cases}
$$

Then if we specify the model

 $E(Y_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$

we we can also write the model *case-wise* as

$$
E(Y_i) = \begin{cases} \beta_0, & \text{if the } i\text{-th subject is in the control group,} \\ \beta_0 + \beta_1, & \text{if the } i\text{-th subject received CBT,} \\ \beta_0 + \beta_2, & \text{if the } i\text{-th subject received FT.} \end{cases}
$$

What then might be some quantities of interest (in terms of β_0 , β_1 , β_2)?