
Monday, December 1

Detectability, Non-Response, and Inclusion Probabilities
Recall that we can estimate τ as

τ̂ =
∑
i∈S

yi

πi
,

where πi is the probability of inclusion of the i-th element in the sample S. To be included the element must
be (a) sampled and (b) the response variable of a sampled element must be observed.

πi = P (the i-th element is sampled)P (the i-th element is observed | the i-th element is sampled).

Failure to observe an element may be due to a variety of factors.

1. Detectability concerns the situation where sampled elements are, for some reason, never known to
exist (i.e., “passed over”). This is how the issue is usually framed in the natural sciences.

2. Non-response concerns the situation where sampled elements fail or refuse to be observed. This is
how the issue is usually framed in the social sciences where elements are people or social organizations
(e.g., a business).

In this lecture we will from the problem of non-observation in terms of detectability, and discuss non-response
specifically in a future lecture. But the results below apply to non-observation due to either non-detection or
non-response.

It is useful to write the inclusion probability as

πi = P (the i-th element is sampled)︸ ︷︷ ︸
πi,S

P (the i-th element is observed | the i-th element is sampled)︸ ︷︷ ︸
πi,D

,

so that πi = πi,Sπi,D. The probability an element is sampled comes from the sampling design, but the
probability that a sampled element is detected is determined by other factors.

Detectability and Estimation
Recall that the Horvitz-Thompson estimator of τ can be written as

τ̂ =
∑
i∈S

yi

πi
.

Now considering that inclusion requires (a) sampling and (b) observations, we have that

τ̂ =
∑
i∈S

yi

πi,Sπi,D
,

since πi = πi,Sπi,D, and S is the set of elements that are both sampled and detected. In principle we can
account for unobserved elements if we know the probability (πi,D) that each element in the sample would be
observed.
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Constant Detection Probability

If πi,D is a constant (i.e., the same for all elements), which we will call πD, then the Horvitz-Thompson
estimator becomes

τ̂ = 1
πD

∑
i∈S

yi

πi,S
.

This makes it clear that if ignore the problem of undetected or non-responding elements, implicitly assuming
that πD = 1, then we will tend to underestimate τ because

1
πD

∑
i∈S

yi

πi,S
≥

∑
i∈S

yi

πi,S
.

That is, unless πD = 1 the estimator would be biased because E(τ̂) < τ .

This also makes it clear that if we know πD (or can estimate it), then we can correct for undetected/non-
response by simply multiplying an estimator of τ by 1/πD.

Example: A one-stage cluster sampling design estimates that the number of larkspur in a region is τ̂ =
1000 plants. However we also know that some larkspur will likely go undetected, and that the probability of
detection is 0.8. What is our estimate τ if we account for detectability?

Constant Detection Probability and Estimation of µ

The situation for estimating µ is a bit different when πi,D is a constant. Consider the Hájek estimator of µ
which can be written as

µ̂ =
∑

i∈S yi/πi∑
i∈S 1/πi

.

If πD is a constant so that πi = πi,SπD, then we can write this estimator as

µ̂ =
∑

i∈S yi/πi,S∑
i∈S 1/πi,S

.

Note that πD does not appear in the estimator (because it cancels-out), and so we do not need to know/estimate
πD, and we do not introduce bias into our estimator by failing to account for it. But this is only true if
the probability of detection/response is constant (i.e., the same for all elements). Also note that there is
still a negative impact of undetected or non-responding elements on estimation — it reduces the number of
elements in the sample and so tends to increase the variance of an estimator and thus the bound on the error
of estimation.

Non-Constant Detection Probability

Things get more complicated when the probability of detection/response is not constant. In that case we can
still, in principle, use Horvitz-Thompson or Hájek estimators like

τ̂ =
∑
i∈S

yi

πi
and µ̂ =

∑
i∈S yi/πi∑
i∈S 1/πi

,

where πi = πi,Sπi,D, but now we would need to know (or be able to estimate) the detection/response
probability of every element in the sample.

Estimating Detectability
Consider the problem of abundance estimation using one-stage cluster sampling. Let yi be the number
of elements in the i-th cluster, and let xi be the number of detected elements in the i-th cluster. Then
detectability is πD = τx/τy. How do we estimate this?
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1. Estimation as a ratio. Using the data from a one-stage cluster sampling design where yi and xi are
observed from n clusters, estimate the detectability as a ratio so that

π̂D = x̄/ȳ.

Example: Consider the problem of estimating the number of plants of a particular species. In a simple
random sample of 20 plots, the mean number of plants per plot was 50, while the mean number of
detected plants per plot was 40. What is the detectability estimate?

2. Double-sampling. Consider a one-stage cluster sampling design with the ratio estimator

τ̂y = τxȳ/x̄.

Here τy is the number of elements in the population, and τx is the number of detected elements in the
population. Since usually τx would be unknown, it could be estimated using double-sampling such that
τ̂x = Nx̄′, where N is the number of clusters in the population, and x̄′ is the mean number of detected
elements in a first-phase sample of clusters. Note that ȳ and x̄ are the mean number of elements and
detected elements, respectively based on the second-phase sample of clusters.Then we can write the
ratio estimator of τy as

τ̂y = Nx̄′ȳ/x̄ = Nx̄′/π̂D.

Note that this estimator implicitly uses the ratio x̄/ȳ to estimate πD (see the first method above) and
adjust the biased estimator Nx̄′.

Example: Suppose that the sample described in the previous problem was the second-phase sample from
a double-sampling design. Suppose the first-phase sample of 40 plots yielded a mean number of detected
elements of 45, and assume the population consists of 100 plots. What is the detectability-adjusted
estimate of the total number of plants in the population?

3. Mark-recapture. Let yi denote the number of marked units in the i-th cluster, and let xi denote the
number of detected marked units in the i-th cluster. Assuming that the detectability of marked units is
the same as unmarked units, we can use x̄/ȳ to estimate detectability.

Example: Suppose the researchers already know of some plants in the region of interest from a previous
survey. In a sample of plots selected using simple random sampling, the mean number of known plants
per plot was 30, and the mean number of the known plants that were detected was 24. What is the
estimate of the detectability of the plants?

Detectability and Estimator Variance
Consider a one-stage cluster sampling design to estimate abundance. Then yi = mi, and τ̂ is an estimator of
the number of elements in the population (i.e., abundance estimation). Assume constant detectability πD.

If each of the mi elements in a cluster has a probability of πD of being observed, then yi has a binomial
distribution (assuming observations are independent). It can be shown that

V (τ̂) = N2
[(

1 − n

N

) σ2

n
+

(
1 − πD

πD

)
µ

n

]
,
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where µ = M/N is the mean number of elements per cluster. Note that the term (1 − πD)/πD increases
as πD decreases, so what happens to the variance of τ̂ as detectability gets worse (i.e., lower)? And what
happens if detectability is perfect (i.e., πD = 1)?

In practice we often need to estimate detectability somehow. In these cases we often have that

V (τ̂) ≈ N2
[(

1 − n

N

) σ2

n
+

(
1 − πD

πD

)
µ

n
+ µ2

πD
V (π̂D)

]
.

So what effect does the variance of our estimate of detectability have on the variance of our estimator for τ?

Distance Sampling
In many cases detectability may be a function of some other variable. The method of distance sampling
assumes that detectability is a function of distance from the observer to the element. The explanation of
how distance sampling works involves some probability theory and is fairly technical. Some of the details
are given here for those that might be interested. But the implementation of distance sampling is relatively
straight forward.

Assume a random line transect and that detectability follows a detection function that depends on the
distance to the center of the transect.
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Assume perfect detection at a distance of x = 0 so that g(0) = 1.

The expected detectability of a randomly sampled element is∫ w

0

g(x)
w

dx = 1
w

∫ w

0
g(x)dx,

i.e., the expected value of g(x). The probability density of x is u(x) = 1/w between 0 and w. Here w is the
half-width of the transect (i.e., the distance from the center to the edge). So∫ w

0
g(x)dx

is the area under the curve and between 0 and w.
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This allows us to determine the distribution of distances to detected elements (see proof below).
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Thus the detectability of an element can be computed as

πD = 1
wf(0|detected) ,

where f(0|detected) is the probability density of the distances of detected elements at a distance of zero (see
proof below).

Informal proof : The distribution of distances of detected elements is

f(x|detected) = P (detected|x)u(x)
P (detected) ,

where u(x) is the distribution of distances (detected or not). Now P (detected|x) = g(x), and P (detected) is
the detectability,

P (detected) = 1
w

∫ w

0
g(x)dx,
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and because transects are located randomly, u(x) = 1/w. Thus,

f(x|detected) = g(x)/w
1
w

∫ w

0 g(x)dx
= g(x)

wP (detected) .

But since g(0) = 1, if evaluate this function at x = 0 we have

f(0|detected) = 1
wP (detected)

which implies that
P (detected) = 1

wf(0|detected) .

In practice, we need to estimate the distribution of the detected elements. There are two general approaches.

1. A non-parametric estimator (e.g., a density histogram).
2. A parametric estimator, assuming a particular family of probability distributions.

Example: The figures blow show non-parametric and parametric estimates of the distribution of distances
of detected elements for the three surveys using a half-width of w = 10.
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Density at Zero
Case Histogram Parametric

A 0.1096 0.1060
B 0.1644 0.1668
C 0.5691 0.6366

Detectability
Case Histogram Parametric

A 0.9124 0.9434
B 0.6084 0.5994
C 0.1757 0.1571
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