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The Hájek Estimator
Recall that if the number of elements in the population is unknown we can use the Horvitz-Thompson
estimator

τ̂ =
∑
i∈S

yi

πi

to estimate µ with the estimator

µ̂ =
∑

i∈S yi/πi∑
i∈S 1/πi

,

because
∑

i∈S 1/πi is an estimator of the number of elements in the population. This is sometimes called the
Hájek estimator.

Now suppose the number of elements in the population is known. This gives us two estimators of µ. We have
the Horvitz-Thompson and Hájek estimators of µ which are

µ̂ = 1
N

∑
i∈S

yi

πi
and µ̂ =

∑
i∈S yi/πi∑
i∈S 1/πi

,

respectively. Here N denotes the number of elements in the population. We also have two estimators of τ .
We have the Horvitz-Thompson and Hájek estimators of τ which are

τ̂ =
∑
i∈S

yi

πi
and τ̂ = N

∑
i∈S yi/πi∑
i∈S 1/πi

,

respectively. Which might we prefer? The Hájek estimator tends to have smaller variance than the Horvitz-
Thompson estimator under the following conditions.

1. The population is relatively homogeneous meaning that σ2 is small.
2. The sample size is random.
3. The inclusion probabilities are weakly or negatively correlated with the target variable.

Note also that some estimators require knowing N (the number of elements in the population).

Generalized Horvitz-Thompson Estimators
We can build estimators that use auxiliary variables (e.g., ratio estimators, regression estimators, and
estimators used with stratification or post-stratification) using Horvitz-Thompson estimators. These are
examples of what are sometimes called generalized Horvitz-Thompson estimators.

Example: Recall that the ratio estimator of τy for a simple random sampling design is

τ̂y = τxȳ/x̄.

Here ȳ and x̄ are estimators of µy and µx, respectively. But for an arbitrary sampling design the Horvitz-
Thompson estimators of µy and µx are

µ̂y = 1
N

∑
i∈S

yi

πi
and µ̂x = 1

N

∑
i∈S

xi

πi
.
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Substituting these estimators into the ratio estimator gives us

τ̂y = τx

∑
i∈S yi/πi∑
i∈S xi/πi

.

Example: Recall that the regression estimator of τy for a simple random sampling design is

τ̂y = Nȳ + b(τx − Nx̄).

Substituting the Horvitz-Thompson estimators for ȳ and x̄ as we did for the ratio estimator gives the
regression estimator for an arbitrary design,

τ̂y =
∑
i∈S

yi

πi
+ b

(
τx −

∑
i∈S

xi

πi

)
.

The slope of the line (b) that relates the target variable to the auxiliary variable is computed differently to
take into account the inclusion probabilities (the details have been omitted here).

Example: For a stratified random sampling design, with simple random sampling within each stratum, the
estimator of τ can be written as

τ̂ = N1ȳ1 + N2ȳ2 + · · · + NLȳL.

The Horvitz-Thompson estimator of µj can be written as

µ̂j = 1
Nj

∑
i∈Sj

yi

πi
.

So then the estimator of τ for any sampling design involving strata is

τ̂ =
∑
i∈S1

yi

πi
+
∑
i∈S2

yi

πi
+ · · · +

∑
i∈SL

yi

πi
.

Second-Order Inclusion Probabilities
The variance of the Horvitz-Thompson estimator depends on second-order (or “joint”) inclusion probabilities
(πij) as opposed to the first-order inclusion probabilities (πi). The second-order inclusion probability πij is
the probability that Ei and Ej will both be included in the sample.

Note: If i = j then πij = πi (i.e., the first-order inclusion probability).

Example: Suppose we have the population P = {E1, E2, E3, E4, E5} and the following sampling design.

S1 = {E1, E2, E4}, P (S1) = 0.1
S2 = {E1, E2, E5}, P (S2) = 0.2
S3 = {E1, E3, E4}, P (S3) = 0.3
S4 = {E1, E3, E5}, P (S4) = 0.2
S5 = {E2, E3, E4}, P (S5) = 0.1
S6 = {E2, E3, E5}, P (S6) = 0.1

Based on this design we can determine the second-order inclusion probabilities for all pairs of elements.

For specific designs there is often a “shortcut” formula for the second-order inclusion probabilities.

Example: Consider the population P = {E1, E2, E3, E4} and a sampling design using sampling with replacement
with selection probabilities given below and a sample size of n = 3.
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Elements Second-Order Inclusion Probability
E1, E2
E1, E3
E1, E4
E1, E5
E2, E3
E2, E4
E2, E5
E3, E4
E3, E5
E4, E5

Element δi πi

E1 0.2 0.488
E2 0.1 0.271
E3 0.2 0.488
E4 0.5 0.875

What are the second-order inclusion probabilities? Earlier we learned that for this design the (first-order)
inclusion probabilities are

πi = 1 − (1 − δi)n.

It can also be shown that the second-order inclusion probabilities are

πij = πi + πj − [1 − (1 − δi − δj)n],

provided that i and j are different elements.1

Elements Second-Order Inclusion Probability
E1, E2 0.102
E1, E3 0.192
E1, E4 0.390
E2, E3 0.102
E2, E4 0.210
E3, E4 0.390

Example: For simple random sampling, πi = n/N and

πij = n

N
× n − 1

N − 1 ,

assuming elements i and j are distinct.
1The proof is fun if you know a bit of probability theory. Note that

πij = P (Ei ∈ S ∩ Ej ∈ S) = P (Ei ∈ S) + P (E2 ∈ S) − P (Ei ∈ S ∪ Ej ∈ S).

Now P (Ei ∈ S) = πi and P (Ej ∈ S) = πj , and

P (Ei ∈ S ∪ Ej ∈ S) = 1 − P (Ei /∈ S ∩ Ej /∈ S).

The probability that either element is selected on a single draw is δi + δj since those events are disjoint — i.e., you cannot
select both elements on a single draw. So the probability that neither element is selected on a single draw is 1 − (δi + δj). Then
probability that neither Ei or Ej is selected on all n draws is (1 − δi − δj)n, and thus

P (Ei /∈ S ∩ Ej /∈ S) = (1 − δi − δj)n.
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Example: For stratified random sampling, if element i is in stratum k then πi = nk/Nk and

πij =
{

nk/Nk × (nk − 1)/(Nk − 1), if elements i and j are both from stratum k,

πiπj , if elements i and j are not from the same stratum.

Example: For one-stage cluster sampling with simple random sampling of clusters, πi = n/N and

πij =
{

n/N, if elements i and j are in the same cluster,
n/N × (n − 1)/(N − 1), if elements i and j are in different clusters.

Variance of the Horvitz-Thompson Estimator
The variance of the Horvitz-Thompson estimator of τ is a function of the first-order (πi) and second-order
(πij) inclusion probabilities. It can be written as

V (τ̂) =
N∑

i=1

(
1 − πi

πi

)
y2

i +
N∑

i=1

N∑
j=1
j ̸=i

(
πij − πiπj

πijπiπj

)
yiyj .

An unbiased estimator of this variance is

V̂ (τ̂) =
∑
i∈S

(
1 − πi

π2
i

)
y2

i +
∑
i∈S

∑
j∈S
j ̸=i

(
πij − πiπj

πijπiπj

)
yiyj .

This is in general. For a design with a fixed sample size, we can write the variance differently and use an
alternative estimator.

The important point to note that the variance of the Horvitz-Thompson estimator depends on the design
entirely through the first- and second-order inclusion probabilities.

It is also worth noting that some of the (estimators of) variances of estimators we have seen are special cases.

Specification of Inclusion Probabilities
There are two ways we specify the inclusion probabilities for a sampling design.

1. Indirect Approach: We specify a sampling design which determines the inclusion probabilities. This
is usually fairly easy as we just need to derive the inclusion probabilities for the sampled elements.
This is true for several designs we have already discussed (e.g., simple random sampling, stratified
random sampling, and cluster sampling). But it can also be done in other designs that we will discuss
soon including Poisson sampling, line-intercept sampling, fixed area plot sampling, and adaptive cluster
sampling.

2. Direct Approach: We specify the inclusion probabilities (usually just first-order) and then try to come
up with a sampling design that has those inclusion probabilities. Finding a sampling design that results
in desired inclusion probabilities can be quite challenging for two reasons: (1) it is computationally
difficult except in very simple cases, (2) the solution will not generally be unique — there will be
multiple sampling designs that result in the same inclusion probabilities, and so we need to make some
hard decisions about which of these designs we might use.

Consider the direct approach. If yi is approximately proportional to an auxiliary variable xi, a relatively low
variance estimator of τ may be obtained if the inclusion probabilities are specified as

πi = nxi

τx
.

Here is a population of N = 5 elements. The inclusion probabilities are based on using the auxiliary variable
a sample of n = 3 elements.
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Element xi πi

E1 3 0.9
E2 2 0.6
E3 1 0.3
E4 1 0.3
E5 3 0.9

Note that τx =
∑5

i=1 xi = 10. Can we find a sampling design that has these inclusion probabilities? Yes,
with some help from a computer, but the solution is not unique. There is more than one sampling design
with the same inclusion probabilities.

Sample Probability
Sample Design A Design B Design C

E1, E2, E3 0.03690 0.04090 0.02044
E1, E2, E4 0.02254 0.02486 0.00865
E1, E2, E5 0.46172 0.44113 0.49593
E1, E3, E4 0.03468 0.02704 0.05271
E1, E3, E5 0.17496 0.14778 0.15968
E1, E4, E5 0.16919 0.21829 0.16258
E2, E3, E4 0.00588 0.00720 0.01819
E2, E3, E5 0.02641 0.07019 0.02394
E2, E4, E5 0.04654 0.01572 0.03284
E3, E4, E5 0.02117 0.00689 0.02503

Typically we find that we can identify many sampling designs with the same first-order inclusion probabilities,
but different second-order inclusion probabilities, so potentially different variances of the Horvitz-Thompson
estimator. One strategy for dealing with this problem is to attempt to use some sort of criteria to identify
to pick one sampling design among many with the same first-order inclusion probabilities using additional
information. One class of solutions to this problem is what is called balanced sampling which we will talk
about in another lecture.
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