Wednesday, November 12

The Hajek Estimator

Recall that if the number of elements in the population is unknown we can use the Horvitz-Thompson

estimator A Z "
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because ) ;s 1/m; is an estimator of the number of elements in the population. This is sometimes called the
Héjek estimator.

Now suppose the number of elements in the population is known. This gives us two estimators of u. We have
the Horvitz-Thompson and Hajek estimators of g which are
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respectively. Here N denotes the number of elements in the population. We also have two estimators of 7.
We have the Horvitz-Thompson and Héjek estimators of 7 which are
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respectively. Which might we prefer? The Hajek estimator tends to have smaller variance than the Horvitz-
Thompson estimator under the following conditions.

1. The population is relatively homogeneous meaning that o2 is small.
2. The sample size is random.
3. The inclusion probabilities are weakly or negatively correlated with the target variable.

Note also that some estimators require knowing N (the number of elements in the population).

Generalized Horvitz-Thompson Estimators

We can build estimators that use auxiliary variables (e.g., ratio estimators, regression estimators, and
estimators used with stratification or post-stratification) using Horvitz-Thompson estimators. These are
examples of what are sometimes called generalized Horvitz-Thompson estimators.

Example: Recall that the ratio estimator of 7, for a simple random sampling design is
Ty = T2§/Z.

Here y and Z are estimators of y, and ., respectively. But for an arbitrary sampling design the Horvitz-
Thompson estimators of y1,, and p, are
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Substituting these estimators into the ratio estimator gives us
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Example: Recall that the regression estimator of 7, for a simple random sampling design is
7y = Ny + b(1, — NZ).

Substituting the Horvitz-Thompson estimators for § and z as we did for the ratio estimator gives the
regression estimator for an arbitrary design,
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The slope of the line (b) that relates the target variable to the auxiliary variable is computed differently to
take into account the inclusion probabilities (the details have been omitted here).

Example: For a stratified random sampling design, with simple random sampling within each stratum, the
estimator of 7 can be written as
7=Niy1 + Nayo + -+ + Npyr.

The Horvitz-Thompson estimator of p; can be written as
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So then the estimator of 7 for any sampling design involving strata is
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Second-Order Inclusion Probabilities

The variance of the Horvitz-Thompson estimator depends on second-order (or “joint”) inclusion probabilities
(m;;) as opposed to the first-order inclusion probabilities (m;). The second-order inclusion probability ;; is
the probability that & and &; will both be included in the sample.

Note: If ¢ = j then m;; = m; (i.e., the first-order inclusion probability).
Example: Suppose we have the population P = {&1, &, €3, E4,E5} and the following sampling design.

S ={&,8,84}, P(S1)=0.1
Sa = {&1,&2,&5}, P(S2) =0.2
S3 ={&1,85,&4}, P(S5)=0.3
Sy =1{&1,85,E}, P(Sy) =0.2
S5 = {&2,&3,&4}, P(S5) =0.1
Se = {&2,&3,85}, P(S) =0.1

Based on this design we can determine the second-order inclusion probabilities for all pairs of elements.
For specific designs there is often a “shortcut” formula for the second-order inclusion probabilities.

Example: Consider the population P = {£;, &3, &3, 4} and a sampling design using sampling with replacement
with selection probabilities given below and a sample size of n = 3.



Elements  Second-Order Inclusion Probability

&1,E
&1,83
E1,&
&1,8
&,83
E,&,
&,&5
&3,&,
&3, &5
&4,85

Element §; T

& 0.2 0.488
& 0.1 0.271
Es 0.2 0.488
&4 0.5 0.875

What are the second-order inclusion probabilities? Earlier we learned that for this design the (first-order)

inclusion probabilities are
T, = 1-— (1 _5Z)n

It can also be shown that the second-order inclusion probabilities are
mig =mi+m; — [1 = (1 =6 —6;)"],

provided that i and j are different elements.!

Elements Second-Order Inclusion Probability

&1, & 0.102
&1, &5 0.192
&, & 0.390
&, &5 0.102
&0, &4 0.210
&, &4 0.390

Example: For simple random sampling, m; = n/N and

assuming elements 4 and j are distinct.

1The proof is fun if you know a bit of probability theory. Note that
mi; = P& eSNE €S8S) =P eS)+P(Ee€8)—P(E eSUE; €8).
Now P(&; € S) =m; and P(€; € S) = mj, and
P& eSUE€eS)=1-PEESNE ¢S).

The probability that either element is selected on a single draw is §; 4 ¢, since those events are disjoint — i.e., you cannot
select both elements on a single draw. So the probability that neither element is selected on a single draw is 1 — (0; 4+ ;). Then

probability that neither & or &; is selected on all n draws is (1 — J; — J;)", and thus
PEESNE ¢S)=(1—46—6d;)".



Example: For stratified random sampling, if element ¢ is in stratum k then m; = ng /Ny and

{nk/Nk x (ng —1)/(Np — 1), if elements ¢ and j are both from stratum k,
'/Tij =

;) if elements ¢ and j are not from the same stratum.

Example: For one-stage cluster sampling with simple random sampling of clusters, m; = n/N and

n/N, if elements ¢ and j are in the same cluster,
Tij = . . . .
! n/N x (n—1)/(N —1), if elements i and j are in different clusters.

Variance of the Horvitz-Thompson Estimator

The variance of the Horvitz-Thompson estimator of 7 is a function of the first-order (7;) and second-order
(m;5) inclusion probabilities. It can be written as
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An unbiased estimator of this variance is
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This is in general. For a design with a fized sample size, we can write the variance differently and use an
alternative estimator.

The important point to note that the variance of the Horvitz-Thompson estimator depends on the design
entirely through the first- and second-order inclusion probabilities.

It is also worth noting that some of the (estimators of) variances of estimators we have seen are special cases.

Specification of Inclusion Probabilities
There are two ways we specify the inclusion probabilities for a sampling design.

1. Indirect Approach: We specify a sampling design which determines the inclusion probabilities. This
is usually fairly easy as we just need to derive the inclusion probabilities for the sampled elements.
This is true for several designs we have already discussed (e.g., simple random sampling, stratified
random sampling, and cluster sampling). But it can also be done in other designs that we will discuss
soon including Poisson sampling, line-intercept sampling, fized area plot sampling, and adaptive cluster
sampling.

2. Direct Approach: We specify the inclusion probabilities (usually just first-order) and then try to come
up with a sampling design that has those inclusion probabilities. Finding a sampling design that results
in desired inclusion probabilities can be quite challenging for two reasons: (1) it is computationally
difficult except in very simple cases, (2) the solution will not generally be unique — there will be
multiple sampling designs that result in the same inclusion probabilities, and so we need to make some
hard decisions about which of these designs we might use.

Consider the direct approach. If y; is approximately proportional to an auxiliary variable z;, a relatively low
variance estimator of 7 may be obtained if the inclusion probabilities are specified as
n;
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Here is a population of N = 5 elements. The inclusion probabilities are based on using the auxiliary variable
a sample of n = 3 elements.



Element z; m;

& 3 09
&y 2 06
Es 1 03
& 1 03
Es 3 09

Note that 7, = Z?Zl xz; = 10. Can we find a sampling design that has these inclusion probabilities? Yes,
with some help from a computer, but the solution is not unique. There is more than one sampling design
with the same inclusion probabilities.

Sample Probability

Sample  Design A Design B Design C

&1, &2, E3 0.03690 0.04090 0.02044
&1, &2, E4 0.02254 0.02486 0.00865
&1, &, 0.46172 0.44113 0.49593
&1, &, &4 0.03468 0.02704 0.05271
&1, &3, &8 0.17496 0.14778 0.15968
&1, €4, & 0.16919 0.21829 0.16258
Ea, &3, &4 0.00588 0.00720 0.01819
Ea, &3, E5 0.02641 0.07019 0.02394
&g, &4, Es 0.04654 0.01572 0.03284
Es, &4, & 0.02117 0.00689 0.02503

Typically we find that we can identify many sampling designs with the same first-order inclusion probabilities,
but different second-order inclusion probabilities, so potentially different variances of the Horvitz-Thompson
estimator. One strategy for dealing with this problem is to attempt to use some sort of criteria to identify
to pick one sampling design among many with the same first-order inclusion probabilities using additional
information. One class of solutions to this problem is what is called balanced sampling which we will talk
about in another lecture.
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