
Friday, Nov 8

Sampling Designs and Inclusion Probabilities
Recall that there are a couple of ways that we can connect the sampling design with the inclusion probabilities.

1. Indirect approach: we specify a sampling design, which implies the inclusion probabilities of the elements.

2. Direct approach: we specify the inclusion probabilities and find a sampling design that has those inclusion
probabilities.

Indirect Approach Examples
Example: Suppose we have a population of objects distributed over a region with total area A, and we use
the following sampling design.

1. Select a random point within the region based on a uniform distribution (i.e., select a random x
coordinate, and select a random y coordinate, both from uniform distributions).

2. The element that is closest to that point is included within the sample. Do this n times, sampling with
replacement.
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Let yi be the value of the target variable for the i-th object, and let ai be the area of the polygon around that
object that contains all the points that would lead to the selection of that object. How would we compute an
estimate of τ or µ using the Hansen-Hurwitz and Horvitz-Thompson estimators?
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Example: Suppose we have a population of elements, and for each element we decide independently with a
virtual “coin flip” whether to include it in the sample. This probability could depend on an auxiliary variable
xi so that the probability is cxi for some c > 0 such that 0 < cxi < 1 for all elements. This in an example of
what is called Poisson sampling. A special case of Poisson sampling is Bernoulli sampling where all πi

are equal.

What are the first-order and second-order inclusion probabilities? What is the (expected) sample size?
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Direct Approach Examples
Example: A variety of sampling algorithms have been developed that, given a sampling frame and desired
inclusion probabilities, will select a sample using a sampling design with those inclusion probabilities.

Here I will make a small sampling frame for a population of with an auxiliary variable, and compute desired
inclusion probabilities as πi = nxi/τx where n = 10.
set.seed(123)
library(tidyverse)
f <- data.frame(element = letters[1:25], x = rpois(25, 5)) %>%

mutate(p = 10 * x / sum(x))
f

element x p
1 a 4 0.2721088
2 b 7 0.4761905
3 c 4 0.2721088
4 d 8 0.5442177
5 e 9 0.6122449
6 f 2 0.1360544
7 g 5 0.3401361
8 h 8 0.5442177
9 i 5 0.3401361
10 j 5 0.3401361
11 k 9 0.6122449
12 l 5 0.3401361
13 m 6 0.4081633
14 n 5 0.3401361
15 o 2 0.1360544
16 p 8 0.5442177
17 q 3 0.2040816
18 r 2 0.1360544
19 s 4 0.2721088
20 t 9 0.6122449
21 u 8 0.5442177
22 v 6 0.4081633
23 w 6 0.4081633
24 x 11 0.7482993
25 y 6 0.4081633

The R package sampling includes several sampling algorithms for specified inclusion probabilities. Each of
them creates an indicator variable to tell us if a given element is to be sampled.
library(sampling)
f <- f %>% mutate(I = UPtille(p))
f

element x p I
1 a 4 0.2721088 0
2 b 7 0.4761905 1
3 c 4 0.2721088 0
4 d 8 0.5442177 1
5 e 9 0.6122449 0
6 f 2 0.1360544 0
7 g 5 0.3401361 0
8 h 8 0.5442177 0
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9 i 5 0.3401361 1
10 j 5 0.3401361 0
11 k 9 0.6122449 0
12 l 5 0.3401361 1
13 m 6 0.4081633 1
14 n 5 0.3401361 1
15 o 2 0.1360544 0
16 p 8 0.5442177 0
17 q 3 0.2040816 1
18 r 2 0.1360544 0
19 s 4 0.2721088 0
20 t 9 0.6122449 0
21 u 8 0.5442177 1
22 v 6 0.4081633 0
23 w 6 0.4081633 1
24 x 11 0.7482993 1
25 y 6 0.4081633 0

So here is our sample.
f %>% filter(I == 1)

element x p I
1 b 7 0.4761905 1
2 d 8 0.5442177 1
3 i 5 0.3401361 1
4 l 5 0.3401361 1
5 m 6 0.4081633 1
6 n 5 0.3401361 1
7 q 3 0.2040816 1
8 u 8 0.5442177 1
9 w 6 0.4081633 1
10 x 11 0.7482993 1

Next step is to go observe the target variable for these elements.

Not all sampling algorithms are equally effective in terms of the variance the Horvitz-Thompson estimator.
Why?

Here are the results of a simulation study using two different sampling algorithms, Poisson and Sampford,
with the sampling frame given above (target variable values were generated randomly).1

1Sampford’s method is relatively simple. First sample just one unit using the inclusion probabilities π1, π2, . . . , πn. This is
easy because when n = 1 the inclusion probabilities are the same as the selection probabilities. Next sample the remaining n − 1
units with replacement with selection probabilities are computed as

δi =
πi/(1 − nπi)∑N

k=1 πk/(1 − nπk)
.

But if the sample does not contain distinct units (i.e., some elements appear more than once) then repeat both steps until it
contains only distinct units. It can be shown that this results in a sample of n units with the specified inclusion probabilities.
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design variance bound
Poisson 2.175507 2.949920

Sampford 1.072398 2.071133

There are almost always multiple sampling designs with the same inclusion probabilities. Some algorithms
(e.g., Sampford) tend to result in estimators with lower variance than others (e.g., Poisson). In some cases we
can use additional information in the form of auxiliary variables to “guide” the choice of sampling design.

Balanced Sampling
Suppose that we have the following information:

1. Specified (first-order) inclusion probabilities (πi) for each element in a population of elements.

2. The values of one or more auxiliary variables (xi1, xi2, . . . , xik) for each element in the population of
elements, as well as the their totals (τx1 , τx2 , . . . , τxk

).

A balanced sampling design has the following properties.

1. The inclusion probabilities of the elements equal the specified values.

2. The sample is (approximately) calibrated such that

τx1 ≈
∑
i∈S

xi1

πi
, τx2 ≈

∑
i∈S

xi2

πi
, . . . , τxk

≈
∑
i∈S

xik

πi
.

These are sometimes called the balancing equations.

Whereas ratio and (generalized) regression estimators seek to calibrate the sample by re-weighting after the
sample is obtained, while balanced sampling seeks to select a sample that is already calibrated.
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Example: Two estimators with “unbalanced sampling” and one with balanced sampling for the Red Oaks
population.
library(BalancedSampling)
library(trtools) # ask me for instructions as to how to install this package

set.seed(123) # random number seed

y <- redoak$volume
x <- with(redoak, pi * (dbh/2)ˆ2)

reps <- 10000 # number of samples to sample
N <- nrow(redoak) # population size
n <- 50 # sample size
mux <- mean(x) # population mean of auxiliary variable

est.unb <- rep(NA, reps) # estimates from unbalanced sampling (no auxiliary variable)
est.rat <- rep(NA, reps) # estimates from unbalanced sampling (ratio estimator)
est.bal <- rep(NA, reps) # estimates from balanced sampling

p <- rep(n/N, N) # specify inclusion probabilities
X <- cbind(p, x) # specify array (matrix) of auxiliary variables

for (i in 1:reps) {
indx <- sample(1:N, n) # unbalanced sampling (SRS)
est.unb[i] <- sum(y[indx]/p[indx])/N
est.rat[i] <- mux*sum(y[indx]/p[indx])/sum(x[indx]/p[indx])
indx <- cubestratified(p, X, rep(1, N)) # balanced sampling using the "cube method"
est.bal[i] <- sum(y[indx]/p[indx])/N

}

# visualization of the approximated sampling distributions

d <- data.frame(estimate = c(est.unb, est.rat, est.bal),
design = rep(c("Unbalanced", "Ratio", "Balanced"), each = reps))

library(ggplot2)
p <- ggplot(d, aes(x = estimate)) + theme_minimal() +

geom_histogram() + facet_wrap(~design) +
labs(x = "Estimate", y = "Frequency")

plot(p)
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library(dplyr)
d %>% group_by(design) %>% summarize(variance = var(estimate), bound = 2*sqrt(variance))

# A tibble: 3 x 3
design variance bound
<chr> <dbl> <dbl>

1 Balanced 1.17 2.16
2 Ratio 0.973 1.97
3 Unbalanced 19.1 8.74

Example: Here is a simulation study with a population of 1000 elements. For each element we have two
auxiliary variables: xi1 and xi2. I used two sampling designs to select a sample of n = 50 elements: an
unbalanced sampling design where all elements have an inclusion probability of 0.05 (SRS), and a balanced
sampling design using the same inclusion probabilities but also using the two auxiliary variables for the
balancing equations.
library(BalancedSampling)

set.seed(123) # random number seed

reps <- 10000 # number of samples to sample
N <- 1000 # population size
n <- 50 # sample size

est.bal <- rep(NA, reps) # array for estimates from balanced sampling
est.unb <- rep(NA, reps) # array for estimates from unbalanced sampling

x1 <- runif(N, 0.1, 25) # first auxiliary variable
x2 <- runif(N, 0.1, 25) # second auxiliary variable
y <- rpois(N, x1 + x2) # target variable

p <- rep(n/N, N) # specify inclusion probabilities
X <- cbind(p, x1, x2) # specify array (matrix) of auxiliary variables

for (i in 1:reps) {
indx <- sample(1:N, n) # "unbalanced" sampling (SRS)
est.unb[i] <- sum(y[indx]/p[indx])/N # compute estimate of mu
indx <- cubestratified(p, X, rep(1, N)) # balanced sampling using the "cube method"
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est.bal[i] <- sum(y[indx]/p[indx])/N # compute estimate of mu
}

# visualization of the approximated sampling distributions

d <- data.frame(estimate = c(est.unb, est.bal),
design = rep(c("Unbalanced", "Balanced"), each = reps))

library(ggplot2)
p <- ggplot(d, aes(x = estimate)) + theme_minimal() +

geom_histogram() + facet_wrap(~design) +
labs(x = "Estimate", y = "Frequency")

plot(p)
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library(dplyr)
d %>% group_by(design) %>% summarize(variance = var(estimate), bound = 2*sqrt(variance))

# A tibble: 2 x 3
design variance bound
<chr> <dbl> <dbl>

1 Balanced 0.510 1.43
2 Unbalanced 2.34 3.06

An interesting use of balanced sampling is with strata. Stratified random sampling can be viewed as a special
case of balanced sampling, but balanced sampling allows us to make use of overlapping strata.

Balanced Sampling via Inclusion Probabilities

Suppose we obtain a balanced sample with the auxiliary variable xi = πi. What then does the balancing
equation imply?

Now suppose we set the inclusion probabilities such that∑
i∈D

πi = nd,
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where D denotes a domain, and we specify an auxiliary variable of

xi =
{

πi, if i ∈ D,

0, otherwise.

What then does the balancing equation imply?

Suppose the inclusion probabilities are defined as πi = nxi/τx. Then we can show that the sample will be
balanced with respect to xi.
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Stratified Random Sampling as Balanced Sampling

Suppose we use balanced sampling with the following.

1. Set the inclusion probabilities such that πi = nj/Nj if the i-th element is in the j-th stratum.
2. Use auxiliary variables xi1, xi2, . . . , xiL such that

xij =
{

1, if the i-th element is from the j-th stratum,

0, otherwise.

Balanced sampling will satisfy the balancing equations if the number of elements from the j-th stratum is nj .
The balancing equations for xij are

τxj
≈

∑
i∈S

xij

πi
= Nj

nj

∑
i∈S

xij .

Since τxj
=

∑N
i=1 xij = Nj , the balancing equations will be satisfied exactly if

∑
i∈S xij = nj (i.e., the

number of elements sampled from the j-th stratum is nj). It turns out this is the same as stratified random
sampling, and if the variances of the strata are approximately equal it is approximately an optimal allocation
(i.e., proportional allocation).

Balanced Sampling for Overlapping Strata

Balanced sampling gives us a way to deal with overlapping strata. For example, suppose we can stratify
Hobbits by Farthing (North, South, East, or West), and by age group (young, adult, old). Suppose we know
the number of elements in each Farthing (Nn, Ns, Ne, and Nw), and the number of elements in each age
group (Ny, Na, and No), but not the number of elements in each combination of Farthing and age group
(e.g., we do not know how many young Hobbits there are in the North Farthing). So we cannot use stratified
random sampling, but we can use balanced sampling if we specify auxiliary variables for each stratum such as

xin =
{

1, if the i-th element is from the North Farthing,

0, otherwise,

for the North Farthing stratum, and

xiy =
{

1, if the i-th element is from young age group,

0, otherwise,

for the young age group stratum. Note that we would have to specify auxiliary variables for the other Farthing
and age group strata.

There is a loose connection here with the technique of raking which is a way of calibrating the sample after it
is selected with respect to overlapping strata. Here we use balanced sampling to try to select a balanced
sample.

The R package BalancedSampling includes functions for balanced sampling.

Spatially Balanced Sampling
A spatially balanced sampling design has the following properties.

1. The inclusion probabilities of the elements equal the specified values.

2. The elements in the selected sample tend to “spread out” in terms of the inter-element distances. Here
the auxiliary variables effectively reflect where the elements are located in space/time.
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Spatially Balanced Sampling

The R packages BalancedSampling and Spbsampling include functions for spatially balanced sampling.
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