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Abundance Estimation With Diagnostic Tests
Assume a simple random sampling design and the problem of estimating the number of elements in a
population that have a disease. Thus yi is defined as

yi =
{

1, if the i-th element has the disease,

0, if the i-th element does not have the disease.

The number of elements in the population that have the disease is then

τy =
N∑

i=1
yi.

Assume that we know the number of elements in the population (N). Two estimators we could use are

τ̂y = Nȳ and τ̂y = τxȳ/x̄,

where xi is some auxiliary variable. Note that ȳ is the proportion of elements in the sample that have the
disease.

Consider using a cheap/quick diagnostic test for the auxiliary variable that can be applied to all elements in
the population. Let xi then be defined as

xi =
{

1, if the i-th element tests positive,

0, if the i-th element tests negative.

Then

τx =
N∑

i=1
xi

is the number of elements in the population that test positive on the diagnostic test, and x̄ is the proportion
of elements in the sample that test positive on the diagnostic test.

Note that the diagnostic test need not be perfect. Some people with the disease may test negative (a false
negative), and some people without the disease may test positive (a false positive).1

Example: Assume that the University of Idaho currently has 10000 students. Researchers want to know
how many students currently have COVID-19. Assume that all students were administered a rapid test, and
of these 300 tested positive. In a simple random sample of 1000 students, 40 are found to have COVID-19
using the highly accurate PCR test, and of these students 35 had tested positive on the rapid test. What are
our estimates of the number of students that have COVID-19 using the two estimators above, where the
ratio estimator uses the rapid test result as an auxiliary variable?

1Assessing the presence of the disease to obtain yi may use a different diagnostic test. The assumption here is that this test
is (nearly) perfect — sometimes called a “gold standard” — in that it has a negligible probability of a false negative or a false
positive.
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Applying the rapid test would be expensive. Is it worth it? Consider the relative efficiency of the rapid test.
It can be shown that in this situation

V (Nȳ) =
(

N − n

N − 1

)
µy(1 − µy)

n

and
V (τxȳ/x̄) =

(
N − n

N − 1

) (
µy

µx

)
1 − µyπsens − (1 − µy)πspec

n
,

where µy = τy/N is the proportion of elements in the population that have COVID-19 (prevalence), µx = τx/N
is the proportion of elements in the population that would test positive on the diagnostic test, and πsens and
πspec are the sensitivity and specificity of the diagnostic test for this population.

Sensitivity (πsens) is the probability that a test will return a positive result when applied to someone with
the disease (thereby avoiding a false negative).

Specificity (πspec) is the probability that a test will return a negative result when applied to someone without
the disease (thereby avoiding a false positive).

The relative efficiency of the ratio estimator (in comparison to the expansion estimator) is then

RE = V (Nȳ)
V (µxȳ/x̄) = (1 − µy)µx

1 − µyπsens − (1 − µy)πspec
,

where it can be shown that
µx = µyπsens + (1 − µy)(1 − πspec).

Thus the relative efficiency depends on the prevalence of the disease (µy), the sensitivity of the test (πsens),
and the specificity of the test (πspec).

Example: The figure below shows the relative efficiency of the ratio estimator when the prevalence is µy =
0.1 as a function of sensitivity and specificity.
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This idea can be applied to other problems where the domain is not “has disease” but there is some sort of
“diagnostic test” that can be used.

Example: Assume now that researchers want to estimate the number of students at the University of Idaho
that have been vaccinated. Based on a simple random sample of 1000 students they find that 640 of the
students have been vaccinated. But they also find that of the 640 vaccinated students in the sample, 370 had
already provided verification of being vaccinated so that they could earn a $50 gift card and a chance to earn
up to $5000 in tuition credits. The researchers know that a total of 3600 students have provided proof of
verification. What are our estimates of the number of vaccinated students at the University of Idaho?

What are the (estimated) sensitivity and specificity of the “diagnostic test” in the previous problem?

The plot shows the relative efficiency of the ratio estimator for the previous survey for various hypothetical
values of prevalence and sensitivity.
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Mark-Recapture Designs
A simple mark-recapture design is essentially a sampling design where we create an auxiliary variable for
the purpose of estimating the number of elements in the population. This auxiliary variable is created by
“marking” a subset of elements.

The Lincoln-Petersen Estimator

Consider a simple random sampling design where we have an auxiliary variable xi such that

xi =
{

1, if the i-th element is marked,

0, if the i-th element is not marked,

and so that

τx =
N∑

i=1
xi

is the number of marked elements in the population. As before let yi = 1 for all elements in the population
so that τy = N . The ratio estimator of τy (and hence N) is then

τ̂y = τxȳ/x̄ = τx/x̄,

since ȳ = 1. We can also write this as
N̂ = τxn

m
,

where m is the number of marked units in the sample because x̄ = m/n (i.e., the proportion of elements in
the sample that are marked where n is the size of the sample and m is the number of marked elements in the
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sample). This estimator is sometimes called the Lincoln-Petersen estimator (or index). There are several
estimators of the variance of this estimator. One of them is

V̂ (N̂) = τ2
xn(n − m)

m3 .

Example: Suppose I have a large jar of jelly beans. Suppose we remove 300 jelly beans, mark them each
with a pen, and then put them back in the jar. Then we shake the jar and draw a handful of 100 jelly beans.
Of these we find that 30 are marked. What is our estimate of the number of jelly beans in the jar? What is
the bound on the error of estimation?

The Chapman Estimator

The Lincoln-Petersen Estimator is biased. It can be shown that E(N̂) > N , although the bias decreases as τx

and/or n increase.

Example: The figure below shows the approximate sampling distribution of the Lincoln-Petersen estimator
when N = 1000, τx = 300, and n = 100.
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An alternative estimator that has much less bias is the Chapman estimator

N̂ = (τx + 1)(n + 1)
m + 1 − 1,

which has an estimated variance of

V̂ (N̂) = (τx + 1)(n + 1)(τx − m)(n − m)
(m + 1)2(m + 2) .
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The Chapman estimator is either unbiased or has relatively small bias.

Example: The figure below shows the approximate sampling distribution of the Chapman estimator when
N = 1000, τx = 300, and n = 100.
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Chapman Estimator

Example: Suppose I have a large jar of jelly beans. Suppose we remove 300 jelly beans, mark them each
with a pen, and then put them back in the jar. Then we shake the jar and draw a handful of 100 jelly beans.
Of these we find that 30 are marked. What is our estimate of the number of jelly beans in the jar? What is
the bound on the error of estimation?
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