
Monday, Nov 4

Inclusion Probabilities Revisited
The inclusion probability of an element is the probability that it will be included in a sample.

Example: Suppose we have the population P = {E1, E2, E3, E4, E5} and the following sampling design.

S1 = {E1, E2, E4}, P (S1) = 0.1
S2 = {E1, E2, E5}, P (S2) = 0.2
S3 = {E1, E3, E4}, P (S3) = 0.3
S4 = {E1, E3, E5}, P (S4) = 0.2
S5 = {E2, E3, E4}, P (S5) = 0.1
S6 = {E2, E3, E5}, P (S6) = 0.1

Based on this design we can determine the inclusion probabilities for all elements.

Element (Ei) Inclusion Probability (πi)
E1 0.8
E2 0.5
E3 0.7
E4 0.5
E5 0.5
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Note that inclusion probabilities are not the same as selection probabilities when sampling with replacement.
But they are related because when sampling with replacement πi = 1 − (1 − δi)n, where πi and δi are the
inclusion and selection probabilities, respectively, of the i-th element.

Example: Consider the P = {E1, E2, E3, E4} and a sampling design using sampling with replacement with
selection probabilities given below and a sample size of n = 3.

Element δi πi

E1 0.2 0.488
E2 0.1 0.271
E3 0.2 0.488
E4 0.5 0.875
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The Horvitz-Thompson Estimator
Suppose we select a sample of elements with some arbitrary probability sampling design. The Horvitz-
Thompson estimator of τ is

τ̂ =
∑
i∈S

yi

πi
,

where S represents the set of distinct elements in the sample, and πi is the inclusion probability of the i-th
element.

Example: Consider the sampling design in the previous example with the population of five elements.
Suppose that the values of the target variable are y1 = 1, y2 = 4, y3 = 2, y4 = 3, and y5 = 1. What is the
estimate of τ based on the Horvitz-Thompson estimator if we select, say, sample S1?

Example: Consider the sampling design in the previous example that used sampling with replacement.
Suppose that the values of the target variable are y1 = 3, y2 = 1, y3 = 2, and y4 = 5. What would be the
value of τ̂ based on the Horvitz-Thompson estimator if the sample was S = {E1, E1, E2}?

The Horvitz-Thompson estimator of τ can be used to estimate µ.

1. If the number of elements in the population is known, then we divide τ̂ by that number.

2. If the number of elements in the population is unknown, it can be estimated as∑
i∈S

1
πi

,

and then
µ̂ =

∑
i∈S yi/πi∑
i∈S 1/πi

.

Example: What would be the estimates of µ for the earlier problems if the number of elements in the
population was unknown?
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Some Properties of Inclusion Probabilities and the Horvitz-Thompson Estimator

1. The Horvitz-Thompson estimator is an unbiased estimator of τ for any sampling design provided that
all πi > 0.1

2. For a design with a fixed sample size,
∑

i∈P πi (i.e., the sum of the inclusion probabilities for all elements
in the population) equals the number of elements in the sample. For a design with a random sample
size,

∑
i∈P πi equals the expected number of elements in the sample.2 An example of a design where

the number of elements in the sample may be random is cluster sampling.

3. The Horvitz-Thompson estimator has zero variance if the inclusion probabilities are proportional to the
target variable such that

πi = nyi/τy.

This suggests that if we had the opportunity to choose the inclusion probabilities we might use something
like

πi = nxi/τx

for some auxiliary variable xi that is assumed to be approximately proportional to yi. Then the variance
of τ̂ may not be zero, but it may be smaller than it would be had we not used the auxiliary variable
to determine the inclusion probabilities. Also note that by specifying the inclusion probabilities as
πi = nxi/τx guarantees that the sum of the inclusion probabilities in the population equals the n (if n is
fixed). We will investigate how to go about specifying a design with chosen inclusion probabilities later.

1To prove that the Horvitz-Thompson estimator is unbiased, first note that we can write it as
∑

i∈P Iiyi/πi where P is the
index set of all elements in the population, and Ii is an indicator variable such that Ii = 1 if the i-th element is in the sample,
and Ii = 0 if the i-th element is not in the sample. Now to show that the estimator is unbiased we need to show that

E

(∑
i∈P

Ii
yi

πi

)
= τ.

To do this we use the fact that the expectation operator can be distributed over addition, and that E(Ii) = 1 × P (Ii =
1) + 0 × P (Ii = 0) = πi since P (Ii) = πi by definition. So we have that

E

(∑
i∈P

Ii
yi

πi

)
=
∑
i∈P

E

(
Ii

yi

πi

)
=
∑
i∈P

E(Ii)
yi

πi
=
∑
i∈P

yi = τ.

Note that we can write that E(Iiyi/πi) = E(Ii)yi/πi because both yi and πi are considered to be fixed constants here. It is
only Ii that is a random variable.

2To show this note that
∑

i∈P πi =
∑

i∈P E(Ii) where Ii is an indicator variable such that Ii = 1 if the i-th element is included
in the sample, and Ii = 0 if the element is excluded from the sample. We have that πi = E(Ii) because E(Ii) = 1πi+0(1−πi) = πi.
Now ∑

i∈P

E(Ii) = E

(∑
i∈P

Ii

)
,

because the expectation of a sum equals the sum of expectations, and
∑N

i=1 Ii is a count of the number of elements in the
sample. And if the number of elements is not random then E

(∑N

i=1 Ii

)
=
∑N

i=1 Ii.
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Hansen-Hurwitz and Horvitz-Thompson
The Hansen-Hurwitz and Horvitz-Thompson estimators can be viewed as general “recipes” for estimators.
But be careful not to confuse the Hansen-Hurwitz estimator with the Horvitz-Thompson estimator.

Hansen-Hurwitz Estimator

The Hansen-Hurwitz estimator can be used for any design that uses sampling with replacement with known
selection probabilities. The estimator is

τ̂ = 1
n

∑
i∈S

yi

δi
,

where δi is the selection probability of the i-th element. Recall that a selection probability is the probability
of selecting the element on each draw from the population. Also note that we may draw the same element
more than once, and the summation may involve the same element more than once.

Example: Consider the sampling design in the previous example that used sampling with replacement.
What would be the value of τ̂ based on the Hansen-Hurwitz estimator if the sample was S = {E1, E1, E2}?

Horvitz-Thompson Estimator

The Horvitz-Thompson estimator can be used for any design with known inclusion probabilities. The estimator
is

τ̂ =
∑
i∈S

yi

πi
,

where πi is the inclusion probability of the i-th element. Recall that an inclusion probability is the probability
the element will be included in the sample. Also unlike the Hansen-Hurwitz estimator the summation is only
over the distinct elements in the sample.

Example: What would be the value of τ̂ based on the Horvitz-Thompson estimator and the same sample
obtained in the previous example?
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Inclusion Probabilities for Some Common Designs
Inclusion probabilities can be relatively easily derived for the designs we have discussed so far.

1. For simple random sampling the inclusion probabilities are all

πi = n

N
,

where N is the number of elements in the population and n is the number of elements sampled.

2. For stratified random champing the inclusion probabilities are

πi = nj/Nj

if the i-th element is in the j-th stratum, where Nj is the number of elements in the j-th stratum, and
nj is the number of elements sampled from the j-th stratum.

3. For one-stage cluster sampling the inclusion probabilities are

πi = n/N

if clusters are sampled using simple random sampling, where N is the number of clusters, and
n is the number of sampled clusters. But if clusters are sampled with replacement with proba-
bilities proportional to cluster size, so that the selection probability of the i-th cluster is δj = mj/M , then

πi = 1 − (1 − mj/M)n,

assuming that the i-th element is in the j-th cluster, where M is the number of elements in the
population and mj is the number of elements in the j-th cluster.

4. For two-stage cluster sampling with simple random sampling at both stages, the inclusion probabili-
ties are

πi = n

N
× mj

Mj

assuming that the i-th element is in the j-th cluster, where N is the number of clusters, and n is the
number of sampled clusters, Mj is the number of elements in the j-th cluster, and mj is the number of
sampled elements from the j-th cluster. If clusters are sampled with replacement with probabilities
proportional to cluster size, but sampling in the second stage is still simple random sampling, then

πi = [1 − (1 − Mj/M)n] × mj

Mj
.

For simple and stratified random sampling, the Horvitz-Thompson estimator for τ is the same as
that we discussed in the context of those designs. For one-stage and two-stage cluster sampling with
simple random sampling at both stages, the Horvitz-Thompson estimator for τ based on the inclusion
probabilities shown above is the same as the unbiased estimator for τ we discussed in the context of
discussing each of those designs.

Horvitz-Thompson Estimators for Some Common Designs
For simple and stratified random sampling, the Horvitz-Thompson estimator of τ is the same estimator we
discussed for those designs. For one- and two-stage cluster sampling designs using simple random sampling of
clusters, the Horvitz-Thompson estimators of τ are the unbiased estimators we discussed in class.
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