Friday, October 3

Two Estimators of a Domain Total Revisited

We saw that for a simple random sampling design there are two estimators of τ_d :

$$\hat{\tau}_d = N_d \bar{y}_d$$
 and $\hat{\tau}_d = \frac{N}{n} n_d \bar{y}_d$.

The first has smaller variance, although it requires knowing N_d . How can we explain the difference in variance using what we know about ratio estimators?

Consider that

$$\bar{y}_d = \frac{\sum_{i \in \mathcal{S}} y_i'}{\sum_{i \in \mathcal{S}} x_i},$$

where

$$y_i' = \begin{cases} y_i, & \text{if the } i\text{-th element is from the domain,} \\ 0, & \text{otherwise,} \end{cases}$$

and

$$x_i = \begin{cases} 1, & \text{if the } i\text{-th element is from the domain,} \\ 0, & \text{otherwise.} \end{cases}$$

Also note that $N_d = \tau_x = \sum_{i=1}^N x_i$ and $n_d = \sum_{i \in \mathcal{S}} x_i$. So we can write these estimators as

$$N_d \bar{y}_d = \tau_x \frac{\sum_{i \in \mathcal{S}} y_i'}{\sum_{i \in \mathcal{S}} x_i} = \tau_x \frac{\frac{1}{n} \sum_{i \in \mathcal{S}} y_i'}{\frac{1}{n} \sum_{i \in \mathcal{S}} x_i} = \tau_x \frac{\bar{y}'}{\bar{x}}$$

and

$$\frac{N}{n}n_d\bar{y}_d = \frac{N}{n}n_d\frac{\sum_{i\in\mathcal{S}}y_i'}{\sum_{i\in\mathcal{S}}x_i} = \frac{N}{n}n_d\frac{\sum_{i\in\mathcal{S}}y_i'}{n_d} = \frac{N}{n}\sum_{i\in\mathcal{S}}y_i' = N\bar{y}'.$$

And note that y'_i is "approximately proportional" to x_i since $y'_i = 0$ if $x_i = 0$. So now why does the estimator $N_d \bar{y}_d$ tend to have a smaller variance than the estimator $(N/n)n_d \bar{y}_d$?

Ratio Estimators as Adjusted Estimators

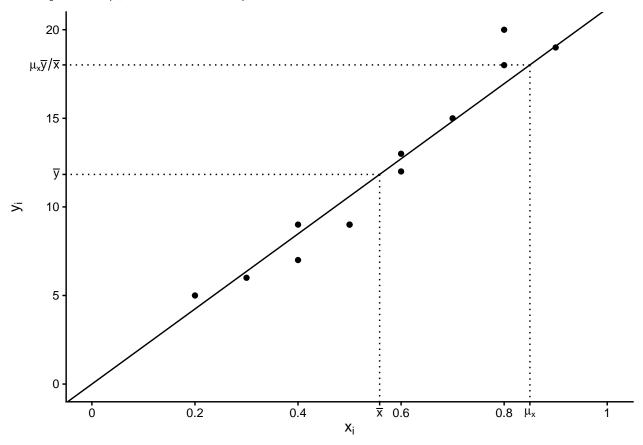
Consider two estimators of μ_y :

$$\hat{\mu}_y = \bar{y}$$
 and $\hat{\mu}_y = \frac{\bar{y}}{\bar{x}}\mu_x$.

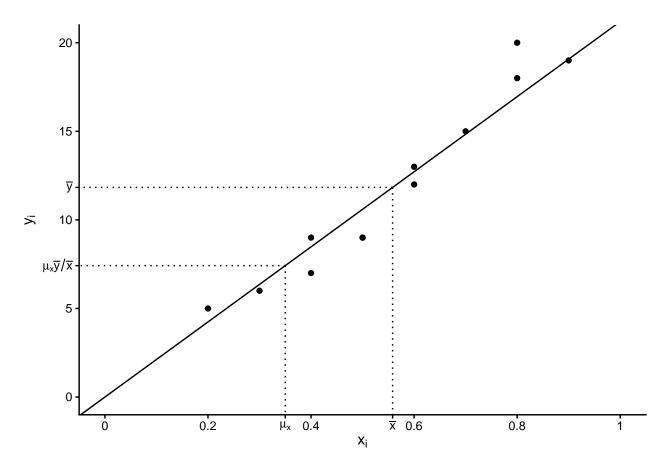
Writing the ratio estimator as

$$\hat{\mu}_y = \frac{\mu_x}{\bar{x}} \bar{y}$$

shows more clearly that the ratio estimator "adjusts" \bar{y} by a factor of μ_x/\bar{x} .

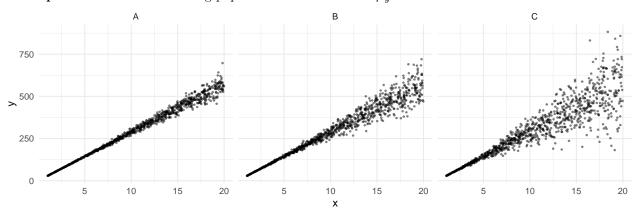

$$\bar{x} < \mu_x \Rightarrow \frac{\mu_x}{\bar{x}} > 1 \Rightarrow \frac{\mu_x}{\bar{x}} \bar{y} > \bar{y} \quad \text{(i.e., adjust estimate up)}$$

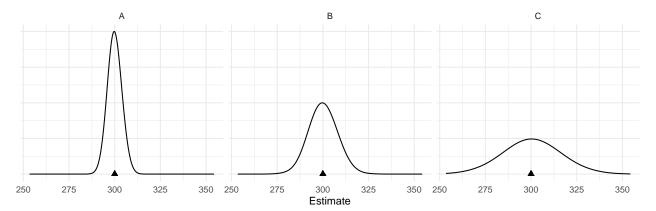
$$\bar{x} = \mu_x \Rightarrow \frac{\mu_x}{\bar{x}} = 1 \Rightarrow \frac{\mu_x}{\bar{x}} \bar{y} = \bar{y} \quad \text{(i.e., no adjustment)}$$


$$\bar{x} > \mu_x \Rightarrow \frac{\mu_x}{\bar{x}} < 1 \Rightarrow \frac{\mu_x}{\bar{x}} \bar{y} < \bar{y} \quad \text{(i.e., adjust estimate down)}$$

The factor of μ_x/\bar{x} tells us if μ_x is underestimated or overestimated by \bar{x} . This gives us some idea that might have underestimated or overestimated μ_y as well, so we might then adjust our estimate.

Example: Here μ_x is underestimated by \bar{x} .

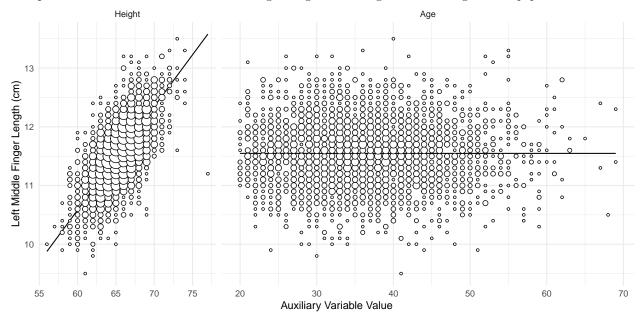

Example: Here μ_x is overestimated by \bar{x} .


Performance of Ratio Estimators

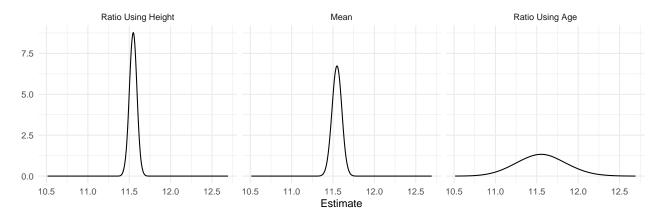
How does the relationship between the target and auxiliary variable affect the ratio estimator?

Example: In each of the following populations N=1000 and $\mu_y=300$.

Consider the sampling distributions of the ratio estimator $\hat{\mu}_y = \mu_x \bar{y}/\bar{x}$ with n=25.



How does the relationship between the target and auxiliary variable affect the ratio estimator, and how does this compare to using the "non-ratio" estimator? Is a ratio estimator always better than a "non-ratio" estimator? Can a ratio estimator be worse?


Example: Consider a population of N = 3000 elements (prisoners) where the target variable is finger length, and three estimators of μ_y :

- 1. $\hat{\mu}_y = \bar{y}$ (i.e., the sample mean)
- 2. $\hat{\mu}_y = \mu_h \bar{y}/\bar{h}$ (i.e., a ratio estimator using height as the auxiliary variable) 3. $\hat{\mu}_y = \mu_a \bar{y}/\bar{a}$ (i.e., a ratio estimator using age as the auxiliary variable)

The plots below show the distribution of finger length with height and with age in the population.

The plots below show the sampling distributions of the three estimators based on a simple random sampling design with n = 25.

estimator	variance	В
Ratio Using Height	0.00174	0.08
Mean	0.00292	0.11
Ratio Using Age	0.07795	0.56

Sources of Auxiliary Variables for Ratio Estimators

- 1. What is necessary for a variable to be used as an auxiliary variable?
- 2. What is *desirable* for a variable to be used as an auxiliary variable?

What are some sources of auxiliary variables?

- 1. Rough approximations to the target variable.
- 2. Some measure of sampling unit size.
- 3. Prior observations of the target variable from a census.