Friday, Sep 27

Two Estimators of a Domain Total Revisited

We saw that for a simple random sampling design there are two estimators of τ_d :

$$\hat{\tau}_d = N_d \bar{y}_d$$
 and $\hat{\tau}_d = \frac{N}{n} n_d \bar{y}_d$.

The first has smaller variance, although it requires knowing N_d . How can we explain the difference in variance using what we know about ratio estimators?

Consider that

$$\bar{y}_d = \frac{\sum_{i \in \mathcal{S}} y_i'}{\sum_{i \in \mathcal{S}} x_i},$$

where

$$y'_i = \begin{cases} y_i, & \text{if the } i\text{-th element is from the domain,} \\ 0, & \text{otherwise,} \end{cases}$$

and

$$x_i = \begin{cases} 1, & \text{if the } i\text{-th element is from the domain,} \\ 0, & \text{otherwise.} \end{cases}$$

Also note that $N_d = \tau_x = \sum_{i=1}^N x_i$ and $n_d = \sum_{i \in S} x_i$. So we can write these estimators as

$$N_d \bar{y}_d = \tau_x \frac{\sum_{i \in \mathcal{S}} y'_i}{\sum_{i \in \mathcal{S}} x_i} = \tau_x \frac{\frac{1}{n} \sum_{i \in \mathcal{S}} y'_i}{\frac{1}{n} \sum_{i \in \mathcal{S}} x_i} = \tau_x \frac{\bar{y}'}{\bar{x}}$$

and

$$\frac{N}{n}n_d\bar{y}_d = \frac{N}{n}n_d\frac{\sum_{i\in\mathcal{S}}y'_i}{\sum_{i\in\mathcal{S}}x_i} = \frac{N}{n}n_d\frac{\sum_{i\in\mathcal{S}}y'_i}{n_d} = \frac{N}{n}\sum_{i\in\mathcal{S}}y'_i = N\bar{y}'.$$

And note that y'_i is "approximately proportional" to x_i since $y'_i = 0$ if $x_i = 0$. So now why does the estimator $N_d \bar{y}_d$ tend to have a smaller variance than the estimator $(N/n)n_d \bar{y}_d$?

Ratio Estimators as Adjusted Estimators

Consider two estimators of μ_y :

$$\hat{\mu}_y = \bar{y}$$
 and $\hat{\mu}_y = \frac{y}{\bar{x}}\mu_x$.

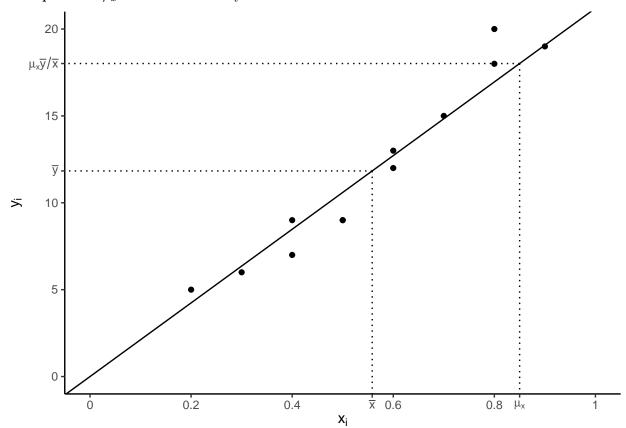
Writing the ratio estimator as

$$\hat{\mu}_y = \frac{\mu_x}{\bar{x}}\bar{y}$$

shows more clearly that the ratio estimator "adjusts" \bar{y} by a factor of μ_x/\bar{x} .

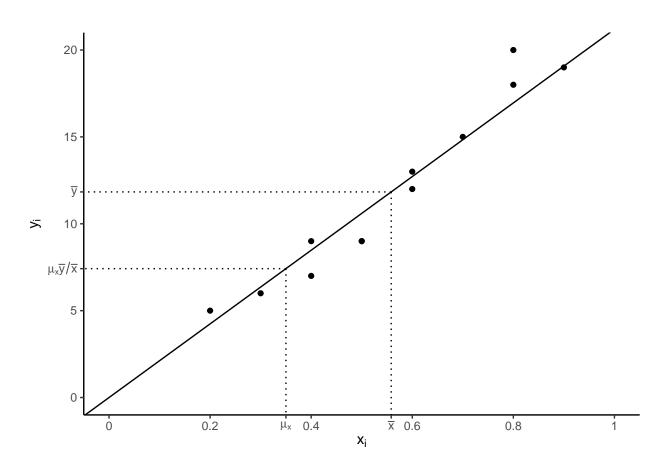
$$\begin{split} \bar{x} &< \mu_x \Rightarrow \frac{\mu_x}{\bar{x}} > 1 \Rightarrow \frac{\mu_x}{\bar{x}} \bar{y} > \bar{y} \quad \text{(i.e., adjust estimate up)} \\ \bar{x} &= \mu_x \Rightarrow \frac{\mu_x}{\bar{x}} = 1 \Rightarrow \frac{\mu_x}{\bar{x}} \bar{y} = \bar{y} \quad \text{(i.e., no adjustment)} \\ \bar{x} &> \mu_x \Rightarrow \frac{\mu_x}{\bar{x}} < 1 \Rightarrow \frac{\mu_x}{\bar{x}} \bar{y} < \bar{y} \quad \text{(i.e., adjust estimate down)} \end{split}$$

The factor of μ_x/\bar{x} tells us if μ_x is *underestimated* or *overestimated* by \bar{x} . This gives us some idea that *might* have underestimated or overestimated μ_y as well, so we might then adjust our estimate.



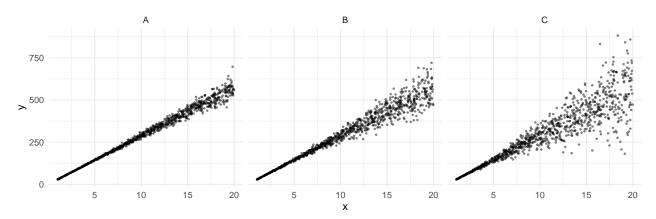
Example: Here μ_x is underestimated by \bar{x} .

Example: Here μ_x is *overestimated* by \bar{x} .

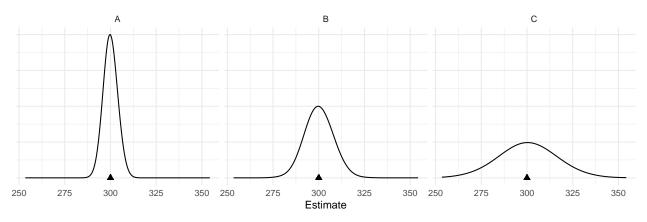


Performance of Ratio Estimators

How does the relationship between the target and auxiliary variable affect the ratio estimator? Example: In each of the following populations N = 1000 and $\mu_y = 300$.



Consider the sampling distributions of the ratio estimator $\hat{\mu}_y = \mu_x \bar{y}/\bar{x}$ with n = 25.

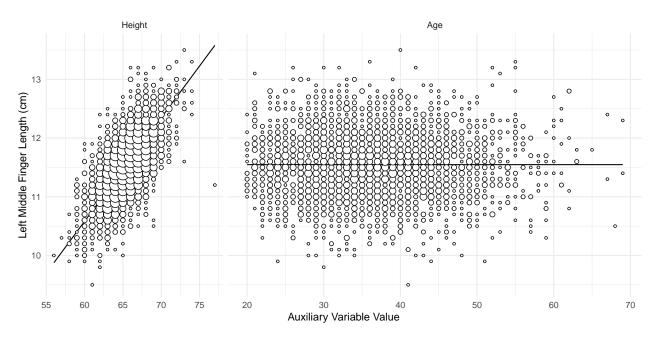


How does the relationship between the target and auxiliary variable affect the ratio estimator, and how does this compare to using the "non-ratio" estimator? Is a ratio estimator always better than a "non-ratio" estimator? Can a ratio estimator be *worse*?

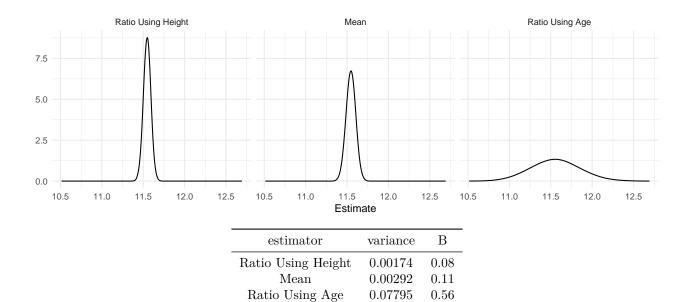
Example: Consider a population of N = 3000 elements (prisoners) where the target variable is finger length, and three estimators of μ_{y} :

- 1. $\hat{\mu}_y = \bar{y}$ (i.e., the sample mean)
- 2. $\hat{\mu}_y = \mu_h \bar{y} / \bar{h}$ (i.e., a ratio estimator using *height* as the auxiliary variable)
- 3. $\hat{\mu}_y = \mu_a \bar{y}/\bar{a}$ (i.e., a ratio estimator using *age* as the auxiliary variable)

The plots below show the distribution of finger length with height and with age in the *population*.



The plots below show the *sampling distributions* of the three estimators based on a simple random sampling design with n = 25.



Sources of Auxiliary Variables for Ratio Estimators

- 1. What is *necessary* for a variable to be used as an auxiliary variable?
- 2. What is *desirable* for a variable to be used as an auxiliary variable?

What are some sources of auxiliary variables?

- 1. Rough approximations to the target variable.
- 2. Some measure of sampling unit *size*.
- 3. Prior observations of the target variable from a *census*.