
Wednesday, Sep 18

In this lecture I will demonstrate how to implement some of the methods we have discussed using the survey
package for R. To try this yourself you will need to install R. It is highly recommended that you use the
RStudio integrated development environment (IDE) when using R. Note that both of these are free and
available for a variety of operating systems.

Set-Up
We will be using the survey package and a data set included with the SDaA package. You can install these
packages using the install.packages command.
install.packages("survey")
install.packages("SDaA")

Note that install.packages only needs to be done once on a given installation of R. To access the contents
of these packages we need to use the library command each time we start a R session.
library(survey)
library(SDaA)

We will use the data set otters from the SDaA package for a few demonstrations. We can see the first few
rows of this data set using head.
head(otters)

section habitat holts
1 1 4 6
2 3 2 0
3 4 1 8
4 8 1 0
5 11 1 0
6 19 2 0

These data were collected using stratified random sampling, where the strata are four habitat types (cliff,
agricultural, peat, and non-peat). The elements are 5 km by 110 m sections along the coast. The target
variable is the number of holts (otter dens).

The next step is optional, but useful for keeping track of the strata. Here I create a new variable habtype
from habitat with more clear labels.
otters$habtype <- factor(otters$habitat, levels = 1:4,

labels = c("cliffs","agricultural","peat","notpeat"))
head(otters)

section habitat holts habtype
1 1 4 6 notpeat
2 3 2 0 agricultural
3 4 1 8 cliffs
4 8 1 0 cliffs
5 11 1 0 cliffs
6 19 2 0 agricultural

1

https://www.r-project.org
https://www.rstudio.com/products/rstudio

Another optional step, but it might be nice to visualize the data using the ggplot2 package.
library(ggplot2) # install this package with install.packages("ggplot2")
p <- ggplot(otters, aes(x = habtype, y = holts)) + theme_classic() +

geom_dotplot(binaxis = "y", stackdir = "center") +
labs(x = "Habitat (Stratum)", y = "Number of Holts (Target Variable)")

plot(p)

0

10

20

30

cliffs agricultural peat notpeat
Habitat (Stratum)

N
um

be
r

of
 H

ol
ts

 (
Ta

rg
et

 V
ar

ia
bl

e)

And yet another optional step would be to compute some basic descriptive statistics using the dplyr package.
library(dplyr) # install this package with install.packages("dplyr")
otters %>% group_by(habtype) %>% summarize(mean = mean(holts), sd = sd(holts), n = n())

A tibble: 4 x 4
habtype mean sd n
<fct> <dbl> <dbl> <int>

1 cliffs 1.74 2.33 19
2 agricultural 1.75 2.61 20
3 peat 13.3 7.67 22
4 notpeat 4.10 3.95 21

This computes the sample mean (ȳj), sample standard deviation (sj), and sample size (nj) for each sample
from each stratum.

Simple Random Sampling
The otters data were collected using a stratified random sampling design, but for this example we will
(incorrectly) assume that the data were collected using simple random sampling. Note that data do not know
how they were collected. It is the responsibility of the survey researcher to correctly communicate the design
to the software.

The first step is to specify the sampling design. But before we do that we need to add more information to
the data set. Namely we need to specify the population size (which is 237 sections). This is done by creating
a new variable.
otters$N <- 237
head(otters)

section habitat holts habtype N
1 1 4 6 notpeat 237

2

2 3 2 0 agricultural 237
3 4 1 8 cliffs 237
4 8 1 0 cliffs 237
5 11 1 0 cliffs 237
6 19 2 0 agricultural 237

Now the design can be specified using the svydesign function.
ottersrs <- svydesign(id = ~1, data = otters, fpc = ~N)

The id = ~1 is used to indicate a variable that identifies the sampling unit for cluster sampling designs
(more on that later), but for element sampling we specify it as above. The data argument is the data frame
containing sample data, and the fpc argument is used to indicate the variable that holds the population
size(s). The object ottersrs now contains information necessary for any inference calculations assuming a
simple random sampling design.

Recall that an estimator of µ for simple random sampling is the sample mean,

ȳ = 1
n

∑
i∈S

yi.

We can compute the estimate from this estimator using the svymean function.
svymean(~holts, design = ottersrs)

mean SE
holts 5.439 0.6031

The SE is the (estimated) standard error, which is simply the standard deviation of the estimator and thus
the square root of the variance of the estimator. The (estimated) variance is computed as

V̂ (ȳ) =
(

1 − n

N

) s2

n
,

where s2 is the variance of the observations in the sample, defined as

s2 = 1
n − 1

∑
i∈S

(yi − ȳ)2.

It is being used here as an estimate of σ2. We have defined the bound on the error of estimation for ȳ as
(approximately) B = 2

√
V (ȳ).1 So we could obtain the (estimated) bound on the error of estimation by

simply doubling the standard error reported by svymean. The confidence interval for µ is ȳ ± B. We can
compute this by passing the result of svymean to the confint function.
confint(svymean(~holts, design = ottersrs))

2.5 % 97.5 %
holts 4.256935 6.621114

The confint function does not necessarily define the bound on the error of estimation as exactly twice the
standard error as it tries to use a multiplier to come closer to a 95% confidence level, but in practice it’ll
usually be close to two. You can also change the confidence level to a different value (e.g., 99%).
confint(svymean(~holts, design = ottersrs), level = 0.99)

0.5 % 99.5 %
holts 3.885496 6.992553

1The ‘survey‘ package will try to compute a more accurate multiplier using a t distribution.

3

Recall that an estimator of τ under simple random sampling is

τ̂ = N

n

∑
i∈S

yi = Nȳ,

and the (estimated) variance of τ̂ is

V̂ (τ̂) = N2
(

1 − n

N

) s2

n
.

We can use the svytotal function for inferences about τ based on this estimator.
svytotal(~holts, design = ottersrs)

total SE
holts 1289 142.94

confint(svytotal(~holts, design = ottersrs))

2.5 % 97.5 %
holts 1008.894 1569.204

Domain Estimation

To estimate domain means or totals, we can use the svyby function.
svyby(~holts, by = ~habtype, design = ottersrs, FUN = svymean)

habtype holts se
cliffs cliffs 1.736842 0.4232673
agricultural agricultural 1.750000 0.4634253
peat peat 13.272727 1.2994362
notpeat notpeat 4.095238 0.6841975

svyby(~holts, by = ~habtype, design = ottersrs, FUN = svytotal)

habtype holts se
cliffs cliffs 95.37805 27.99661
agricultural agricultural 101.15854 31.20485
peat peat 843.95122 150.03694
notpeat notpeat 248.56098 56.33427

Recall that we discussed two ways to estimate a domain total (τ̂d) in the context of stratified random sampling,
depending on whether or not we know the size of the domain (i.e., Nd). Here svyby is using the estimator
that does not require knowing the domain size, which is

τ̂d = N

n
ndȳd.

If we did know the domain size we could estimate the domain total with the other estimator, which is

τ̂d = Ndȳd.

A way to use this estimator is via post-stratification (see below). Confidence intervals for domain means or
totals can be obtained by using confint.
confint(svyby(~holts, by = ~habtype, design = ottersrs, FUN = svytotal))

2.5 % 97.5 %
cliffs 40.50571 150.2504
agricultural 39.99815 162.3189
peat 549.88422 1138.0182
notpeat 138.14783 358.9741

4

Categorical Target Variable

Now suppose instead that target variable was the habitat type rather than the number of holts. We can
estimate the proportion of each habitat type as follows.
svymean(~habtype, design = ottersrs)

mean SE
habtypecliffs 0.23171 0.0379
habtypeagricultural 0.24390 0.0386
habtypepeat 0.26829 0.0398
habtypenotpeat 0.25610 0.0392

We can also estimate the number of sections of each habitat type as follows.
svytotal(~habtype, design = ottersrs)

total SE
habtypecliffs 54.915 8.9853
habtypeagricultural 57.805 9.1452
habtypepeat 63.585 9.4356
habtypenotpeat 60.695 9.2952

Of course this would only be necessary if the researchers did not know how many sections there were of each
type.

Stratified Random Sampling
As mentioned earlier, the otters data were collected using a stratified sampling design, not simple random
sampling. Here we will see how to specify this design and make inferences assuming a stratified sampling
design.

For stratified random sampling we need to specify the size of each stratum.
otters$N[otters$habtype == "cliffs"] <- 89
otters$N[otters$habtype == "agricultural"] <- 61
otters$N[otters$habtype == "peat"] <- 40
otters$N[otters$habtype == "notpeat"] <- 47
head(otters)

section habitat holts habtype N
1 1 4 6 notpeat 47
2 3 2 0 agricultural 61
3 4 1 8 cliffs 89
4 8 1 0 cliffs 89
5 11 1 0 cliffs 89
6 19 2 0 agricultural 61

Another way you can do this is with the case_when function from the dplyr package.
otters <- otters %>% mutate(N = case_when(

habtype == "cliffs" ~ 89,
habtype == "agricultural" ~ 61,
habtype == "peat" ~ 40,
habtype == "notpeat" ~ 47))

head(otters)

section habitat holts habtype N
1 1 4 6 notpeat 47
2 3 2 0 agricultural 61

5

3 4 1 8 cliffs 89
4 8 1 0 cliffs 89
5 11 1 0 cliffs 89
6 19 2 0 agricultural 61

Now we can specify the design using svydesign.
otterstrat <- svydesign(id = ~1, strata = ~habtype, fpc = ~N, data = otters)

Inferences can be obtained using the same commands as earlier, although note that the results are not the
same because the assumed design is different. Recall that an estimator of µ under stratified random sampling
is

µ̂ = N1

N
ȳ1 + N2

N
ȳ2 + · · · + NL

N
ȳL =

L∑
j=1

Nj

N
ȳj ,

which has an estimated variance of

V̂ (µ̂) = 1
N2

L∑
j=1

N2
j

(
1 − nj

Nj

)
s2

j

nj
.

These formulas are used to obtain the following (recall that the standard error is the square root of the
variance).
svymean(~holts, design = otterstrat)

mean SE
holts 4.1549 0.3119

An estimator of τ under stratified random sampling is

τ̂ = N1ȳ1 + N2ȳ2 + · · · + NLȳL =
L∑

i=1
Nj ȳj ,

which has an estimated variance of

V̂ (τ̂) =
L∑

j=1
N2

j

(
1 − nj

Nj

)
s2

j

nj
.

These formulas are used to obtain the following.
svytotal(~holts, design = otterstrat)

total SE
holts 984.71 73.921

Confidence intervals can be obtained in the same way as before.
confint(svytotal(~holts, design = otterstrat))

2.5 % 97.5 %
holts 839.8317 1129.597

The optional argument deff = TRUE will estimate the design effect for the stratified sampling design.
svytotal(~holts, design = otterstrat, deff = TRUE)

total SE DEff
holts 984.714 73.921 0.3572

6

The total sample size is n = 82. So the effective sample size of this design is estimated to be 82/0.3572 ≈ 230.

Estimates of domain means and totals can be obtained as follows.
svyby(~holts, by = ~habtype, design = otterstrat, FUN = svymean)

habtype holts se
cliffs cliffs 1.736842 0.4739725
agricultural agricultural 1.750000 0.4790589
peat peat 13.272727 1.0964954
notpeat notpeat 4.095238 0.6408521

svyby(~holts, by = ~habtype, design = otterstrat, FUN = svytotal)

habtype holts se
cliffs cliffs 154.5789 42.18355
agricultural agricultural 106.7500 29.22259
peat peat 530.9091 43.85982
notpeat notpeat 192.4762 30.12005

The estimator of µd is the same for simple random sampling and stratified random sampling (i.e., ȳd), but
the standard errors are not because the design is different. Also here the estimator being used for τd is the
estimator that uses a known Nd, since the domains are the strata and the strata sizes are provided. The
formulas for the (estimated) variances of the domain estimators are the same as those for simple random
sampling applied to each sample.

Further Inferences Concerning Strata

The above shows how to make inferences concerning individual strata parameters. We can also consider
(a) how to make inferences about two or more strata combined and also (b) how to make inferences about
differences between strata parameters.

Suppose we wanted to make inferences about the total number of holts in non-agricultural sections (i.e., cliffs,
peat, or not peat). There are a couple of ways this can be done. One is to use the subset function which
communicates that we only want to make inferences about a particular sub-population.
notagg <- subset(otterstrat, habtype %in% c("cliffs","peat","notpeat"))
svytotal(~holts, design = notagg)

total SE
holts 877.96 67.9

If there was a variable in the original data that identifies the non-agricultural sections we can use that instead.
otters <- otters %>%

mutate(agricultural = ifelse(habtype %in% c("cliffs","peat","notpeat"), "no", "yes"))
head(otters)

section habitat holts habtype N agricultural
1 1 4 6 notpeat 47 no
2 3 2 0 agricultural 61 yes
3 4 1 8 cliffs 89 no
4 8 1 0 cliffs 89 no
5 11 1 0 cliffs 89 no
6 19 2 0 agricultural 61 yes

otterstrat <- svydesign(id = ~1, strata = ~habtype, fpc = ~N, data = otters)
svyby(~holts, by = ~agricultural, design = otterstrat, FUN = svytotal)

agricultural holts se

7

no no 877.9642 67.89958
yes yes 106.7500 29.22259

This approach also works for simple random sampling.
notagg <- subset(ottersrs, habtype %in% c("cliffs","peat","notpeat"))
svytotal(~holts, design = notagg)

total SE
holts 1187.9 146.28

The estimate is different here because svytotal is using the estimator that does not use the (in this case
known) size of the domain. But you can use the estimator that does know the size of the domain if you use
post-stratification (as shown below).

Here is another approach using the svycontrast function which is quite general because it allows us to
specify many different kinds of functions of stratum or domain means or totals. Here I will show how we can
estimate the difference in the stratum means between the peat and non-peat strata.
tmp <- svyby(~holts, by = ~habtype, design = otterstrat, FUN = svymean)
tmp

habtype holts se
cliffs cliffs 1.736842 0.4739725
agricultural agricultural 1.750000 0.4790589
peat peat 13.272727 1.0964954
notpeat notpeat 4.095238 0.6408521

svycontrast(tmp, quote(peat - notpeat))

nlcon SE
contrast 9.1775 1.27

confint(svycontrast(tmp, quote(peat - notpeat)))

2.5 % 97.5 %
contrast 6.688263 11.66672

Post-Stratification
Now assume that the sampling design was simple random sampling, but that we want to post-stratify based
on the habitat auxiliary variable because we know how many sections are within each habitat. To do this we
first need to create another data set that holds the known sizes of the strata.
habitatfreq <- data.frame(habtype = c("cliffs","agricultural","peat","notpeat"),

Freq = c(89,61,40,47))
habitatfreq

habtype Freq
1 cliffs 89
2 agricultural 61
3 peat 40
4 notpeat 47

This information can then be passed to the postStratify function which will effectively re-weight the
observations.
otterpost <- postStratify(design = ottersrs, strata = ~habtype, population = habitatfreq)

Now we can estimate µ and τ as well as the domain means and totals.

8

svymean(~holts, design = otterpost)

mean SE
holts 4.1549 0.3256

svytotal(~holts, design = otterpost)

total SE
holts 984.71 77.162

svyby(~holts, by = ~habtype, design = otterpost, FUN = svymean)

habtype holts se
cliffs cliffs 1.736842 0.4232673
agricultural agricultural 1.750000 0.4634253
peat peat 13.272727 1.2994362
notpeat notpeat 4.095238 0.6841975

svyby(~holts, by = ~habtype, design = otterpost, FUN = svytotal)

habtype holts se
cliffs cliffs 154.5789 37.67079
agricultural agricultural 106.7500 28.26895
peat peat 530.9091 51.97745
notpeat notpeat 192.4762 32.15728

Note that the mean and total estimates are the same as those from stratified random sampling, but the
standard errors are not. This is because the variances for estimators are not computed the same under
post-stratification as they are under stratified random sampling. Note also that after post-stratification the
estimator for a domain total uses the estimator that uses the known domain size. This also happens below
where we estimate the number of holts in non-agricultural sections.
notagg <- subset(otterpost, habtype %in% c("cliffs","peat","notpeat"))
svytotal(~holts, design = notagg)

total SE
holts 877.96 71.797

Note that the estimate is the same as when the design was specified as stratified random sampling, but the
standard error is not.

Sampling Weights

We can compute sampling weights using the weights function. For simple random sampling we know that
all elements have a weight of N/n.
otters$w <- weights(ottersrs)
head(otters)

section habitat holts habtype N agricultural w
1 1 4 6 notpeat 47 no 2.890244
2 3 2 0 agricultural 61 yes 2.890244
3 4 1 8 cliffs 89 no 2.890244
4 8 1 0 cliffs 89 no 2.890244
5 11 1 0 cliffs 89 no 2.890244
6 19 2 0 agricultural 61 yes 2.890244

Remember that we changed the variable N earlier for the stratified random sampling design. For the weights
for simple random sampling N = 237 and n = 82. For stratified random sampling an element has a weight of

9

Nj/nj if it is form the j-th stratum.
otters$w <- weights(otterstrat)
head(otters)

section habitat holts habtype N agricultural w
1 1 4 6 notpeat 47 no 2.238095
2 3 2 0 agricultural 61 yes 3.050000
3 4 1 8 cliffs 89 no 4.684211
4 8 1 0 cliffs 89 no 4.684211
5 11 1 0 cliffs 89 no 4.684211
6 19 2 0 agricultural 61 yes 3.050000

When we use post-stratification we change the weights to match those for stratified random sampling.
otters$w <- weights(otterpost)
head(otters)

section habitat holts habtype N agricultural w
1 1 4 6 notpeat 47 no 2.238095
2 3 2 0 agricultural 61 yes 3.050000
3 4 1 8 cliffs 89 no 4.684211
4 8 1 0 cliffs 89 no 4.684211
5 11 1 0 cliffs 89 no 4.684211
6 19 2 0 agricultural 61 yes 3.050000

A property of sampling weights (if they have not been modified) is that they sum to the number of elements
in the population (for simple random sampling) and to the number of elements in each stratum (for stratified
random sampling).
otters <- otters %>%

mutate(srswghts = weights(ottersrs), stratwghts = weights(otterstrat))
otters %>% summarize(weightsum = sum(srswghts))

weightsum
1 237

otters %>% group_by(habtype) %>% summarize(weightsum = sum(stratwghts))

A tibble: 4 x 2
habtype weightsum
<fct> <dbl>

1 cliffs 89
2 agricultural 61
3 peat 40
4 notpeat 47

There are useful ways that weights can be used that we will discuss later in the course.

Double Sampling (Two-Phase Sampling)
I am going to use another data set to demonstrate double sampling for strata with unknown sizes. The data
are in a the trtools package which can be installed using the following command, provided you have already
installed the devtools package (which can be installed using install.packages(devtools)).
devtools::install_github("trobinj/trtools")

The data set is called ismail. The elements are veterans. They were evaluated quickly in the first phase
to classify them as disabled or not. Those veterans sampled in the second phase where then assessed by

10

psychiatrists to determine whether or not they had alcohol, sleep, or psychiatric disorders.
library(trtools)
ismail$N <- 53462
head(ismail, 20)

disabled alcohol sleep psych N
1 no <NA> <NA> <NA> 53462
2 no <NA> <NA> <NA> 53462
3 no <NA> <NA> <NA> 53462
4 no <NA> <NA> <NA> 53462
5 no <NA> <NA> <NA> 53462
6 no <NA> <NA> <NA> 53462
7 no <NA> <NA> <NA> 53462
8 no <NA> <NA> <NA> 53462
9 no <NA> <NA> <NA> 53462
10 no <NA> <NA> <NA> 53462
11 yes <NA> <NA> <NA> 53462
12 no <NA> <NA> <NA> 53462
13 yes no yes yes 53462
14 no <NA> <NA> <NA> 53462
15 no <NA> <NA> <NA> 53462
16 no <NA> <NA> <NA> 53462
17 yes no no no 53462
18 no <NA> <NA> <NA> 53462
19 no <NA> <NA> <NA> 53462
20 no <NA> <NA> <NA> 53462

The variable disabled is the stratification variable. The target variables (all categorical) are alcohol, sleep,
and psych. The missing values (the <NA>) are due to the double sampling. First we specify a two-phase
sampling design using twophase. Note that many of the arguments have two parts, one for each phase.
ismail2phase <- twophase(id = list(~1, ~1), strata = list(NULL, ~disabled),

fpc = list(~N, NULL), subset = ~!is.na(sleep), data = ismail)

Inferences can then be obtained the usual way. Note that here because sleep is categorical, totals are
the estimated number of veterans in the population with sleep disorders, and the means are the estimated
proportions of veterans in the population with sleep disorders.
svytotal(~sleep, design = ismail2phase)

total SE
sleepno 44145.8 1826.1
sleepyes 9316.2 1826.1

svymean(~sleep, design = ismail2phase)

mean SE
sleepno 0.82574 0.0342
sleepyes 0.17426 0.0342

11

	Set-Up
	Simple Random Sampling
	Domain Estimation
	Categorical Target Variable

	Stratified Random Sampling
	Further Inferences Concerning Strata

	Post-Stratification
	Sampling Weights

	Double Sampling (Two-Phase Sampling)

