Friday, September 12

Optimum Allocation

Recall that allocation concerns specifying the sample sizes in a stratified sampling design with L strata — i.e., n_1, n_2, \ldots, n_L . A couple of things we can take into consideration are (a) the bound of the error of estimation and (b) the cost of the survey.

Recall that under stratified random sampling the variances of $\hat{\mu}$ and $\hat{\tau}$ are

$$V(\hat{\mu}) = \frac{1}{N^2} \sum_{j=1}^{L} N_j^2 \left(1 - \frac{n_j}{N_j} \right) \frac{\sigma_j^2}{n_j} \quad \text{and} \quad V(\hat{\tau}) = \sum_{j=1}^{L} N_j^2 \left(1 - \frac{n_j}{N_j} \right) \frac{\sigma_j^2}{n_j},$$

respectively, where σ_j^2 is the variance of the observations of the elements in the *i*-th stratum. The bounds on the error of estimation for $\hat{\mu}$ and $\hat{\tau}$ are then

$$B = 2\sqrt{V(\hat{\mu})}$$
 and $B = 2\sqrt{V(\hat{\tau})}$,

respectively.

Assume that the *cost* of the survey can be computed using

$$C = c_0 + \sum_{j=1}^{L} n_j c_j,$$

where c_0 is the overhead cost and c_j is the cost-per-element in the j-th stratum.

We will consider two different approaches to optimum allocation which depend on our objective.

- 1. For a fixed *bound*, how do we allocate to minimize the *cost*?
- 2. For a fixed *cost*, how do we allocate to minimize the *bound*?

These are *constrained optimization* problems, but the solutions are (relatively) simple as these kinds of problems go.

Step 1

First we determine how to divide n into n_1, n_2, \ldots, n_L . Regardless of which goal we have, it can be shown that

$$n_j = n \left(\frac{N_j \sigma_j / \sqrt{c_j}}{N_1 \sigma_1 / \sqrt{c_1} + N_2 \sigma_2 / \sqrt{c_2} + \dots + N_L \sigma_L / \sqrt{c_L}} \right) = n \left(\frac{N_j \sigma_j / \sqrt{c_j}}{\sum_{k=1}^L N_k \sigma_k / \sqrt{c_k}} \right).$$

Note that in practice we need a good guess of $\sigma_1, \sigma_2, \ldots, \sigma_L$. Also note that this does not yet give us n or n_1, n_2, \ldots, n_L . It only tells us the *proportion* of the total sample size that should be allocated to each stratum because

$$\frac{n_j}{n} = \frac{N_j \sigma_j / \sqrt{c_j}}{N_1 \sigma_1 / \sqrt{c_1} + N_2 \sigma_2 / \sqrt{c_2} + \dots + N_L \sigma_L / \sqrt{c_L}} = \frac{N_j \sigma_j / \sqrt{c_j}}{\sum_{k=1}^L N_k \sigma_k / \sqrt{c_k}}.$$

Example: Recall the sword fern survey.

Stratum	Region	N_{j}	n_{j}	\bar{y}_j	s_{j}
1 2	Forest Prairie	30 87 117	8 5 13	287 11.3	149.1 16.8

If we were doing this survey again at the same location, we might use s_1 and s_2 as guesses of σ_1 and σ_2 , respectively. Assume that $c_1 = 4$ and $c_2 = 1$. What would be n_1/n and n_2/n ?

Observe that n_j is proportional to $N_j \sigma_j / \sqrt{c_j}$. What does this tell us about the relationship between n_j and N_j , n_j and n_j , and n_j and n_j and n_j ? To which strata do we allocate larger sample sizes?

Step 2

Second we compute n. How we do this depends on our goal.

1. If our goal is to minimize cost for a fixed bound on the error of estimation, then we compute

$$n = \frac{\left(\sum_{j=1}^{L} N_j \sigma_j / \sqrt{c_j}\right) \left(\sum_{j=1}^{L} N_j \sigma_j \sqrt{c_j}\right)}{N^2 V + \sum_{j=1}^{L} N_j \sigma_j^2},$$

where $V = B^2/4$ if we are estimating μ , and $V = B^2/(4N^2)$ if we are estimating τ .

Example: Suppose we are estimating μ and we want a bound on the error of estimation of B=20 g/m^2 . What is the n that will give us the least expensive survey with that bound on the error of estimation? Similarly what would we use for n if we wanted to estimate τ with a bound on the error of estimation of B=2000 g/m^2 ?

2. If our goal is to minimize the bound of estimation for a fixed cost, then we compute

$$n = \frac{(C - c_0) \sum_{j=1}^{L} N_j \sigma_j / \sqrt{c_j}}{\sum_{j=1}^{L} N_j \sigma_j \sqrt{c_j}}.$$

Comment: A related goal is to minimize the bound for a fixed total sample size n. This can be viewed as a special case where we set C = n, $c_0 = 0$, and all $c_j = 1$. In that case n will necessarily equal C which equals n. So we do not need to do the above calculation and we can just proceed to the third step!

Example: Suppose we want to minimize the bound on the error of estimation subject to a total cost of C = 100 and an overhead cost of $c_0 = 20$. What is n?

Step 3

Finally we combine our results from the first two steps to compute for each stratum

$$n_j = n \left(\frac{N_j \sigma_j / \sqrt{c_j}}{\sum_{k=1}^L N_k \sigma_k / \sqrt{c_k}} \right).$$

Example: Given the results from the earlier examples, if we are estimating μ what are n_1 and n_2 if we want to minimize cost for a bound on the error of estimation of $B = 20 \ g/m^2$. What if we want to minimize the bound for a fixed cost with C = 100 and $c_0 = 20$ when estimating μ ?

Summary of Optimum Allocation

1. Compute the allocation fraction

$$\frac{N_j \sigma_j / \sqrt{c_j}}{\sum_{k=1}^L N_k \sigma_k / \sqrt{c_k}}$$

for each stratum.

- 2. Decide if you want to minimize cost for a fixed bound, or minimize the bound for a fixed cost, and then use the appropriate formula to compute n.
- 3. Compute n_1, n_2, \dots, n_L using the allocation fractions and n you computed in the previous two steps as

$$n_j = n \left(\frac{N_j \sigma_j / \sqrt{c_j}}{\sum_{k=1}^L N_k \sigma_k / \sqrt{c_k}} \right).$$

Special Cases

1. **Neyman allocation** is a special case where the cost-per-element is the same for all strata (i.e., all c_j are equal). In this case we have that in the first step

$$\frac{n_j}{n} = \frac{N_j \sigma_j}{\sum_{k=1}^L N_k \sigma_k},$$

and if we are want to minimize the cost for a fixed bound then the calculation of the n simplifies to

$$n = \frac{\left(\sum_{j=1}^{L} N_j \sigma_j\right)^2}{N^2 V + \sum_{j=1}^{L} N_j \sigma_j^2}.$$

Example: Assume that the cost-per-square is the same regardless of whether a square is forest or prairie. What are n, n_1 , and n_2 if we want to estimate μ with a bound on the error of estimation of $B = 20 \ g/m^2$?

2. **Proportional allocation** is a special case where the fraction of sampled elements in each stratum equals the fraction of population elements in that stratum. That is

$$\frac{n_j}{n} = \frac{N_j}{N},$$

which implies that $n_j = nN_j/N$. Proportional allocation is an optimum allocation if the cost-per-element is the same for all elements and all σ_j^2 are equal. In practice we might have approximate proportional allocation where $n_j/n \approx N_j/n$.

Example: What would n_1/n and n_2/n be for the sword fern survey using proportional allocation?

Restrictions on Optimum Allocation

There are some practical restrictions on an optimum allocation.

- 1. Optimum n and n_j must be non-negative integers, so usually the optimum allocation is approximate.
- 2. An optimum allocation may produce $n_j = 0$ or $n_j = 1$. But to estimate σ_j^2 we need all $n_j \geq 2$.
- 3. It is possible to have an optimum allocation of $n_j > N_j$, which is an impossible design.

For the latter two cases, we can find an optimum allocation subject to the constraint that all $2 \le n_j \le N_j$ if we find that some $n_j < 2$ or $n_j > N_j$ using the method above, but how this would be done is beyond the scope of this lecture (although see below if you are curious).

The formulas given above are an *analytical* solution to the optimum allocation problem. These are *derived* using the necessary mathematics (namely calculus and what are called Lagrange multipliers). But the optimum allocation problem can also be solved *numerically* by using computing power instead. I have created a short demonstration of how to do this in R. You do not need to know how to do this for this course, but I have included it for any students that might be interested.