
Wednesday, Aug 28

Simulation (Monte Carlo) Studies
Simulation studies can be used to study sampling distributions of estimators. They are an empirical “brute-
force” approach that can be used when analytical results are difficult or impossible to obtain. They work by
simulating a survey many times to generate an empirical distribution of the estimates that approximates the
theoretical probability distribution.

Example: Consider a simple random sampling design with a population of N = 3000 elements/units
(incarcerated men). The target variable is the length of the left middle finger in centimeters. The sample size
is n = 25. This population has a mean of µ ≈ 11.55 cm and a variance of σ2 ≈ 0.3 cm. This implies that the
sampling distribution of ȳ has a mean of

E(ȳ) = µ = 11.55 cm

and a standard deviation (i.e., standard error) of

√
V (ȳ) =

√(
1 − n

N

) σ2

n
=

√(
1 − 25

3000

)
0.3
25 ≈ 0.11 cm.

Now suppose we simulate the survey 10000 times using the R code below.
set.seed(123) # random number generator seed
library(SDaA) # package that includes the data
library(ggplot2) # package for plotting
n <- 25 # desired sample size
r <- 10000 # number of samples to simulate
ybar <- rep(NA, r) # vector/array to store the estimates
for (i in 1:r) { # repeatedly select samples using SRS and compute estimate

samp <- sample(anthrop$finger, n)
ybar[i] <- mean(samp)

}
mean(ybar) # mean of 10000 estimates

[1] 11.54726

sd(ybar) # standard deviation of 10000 estimates

[1] 0.1104406

ggplot(data.frame(ybar), aes(x = ybar)) + theme_minimal() +
geom_histogram(color = "black", fill = grey(0.8)) +
labs(x = "Sample Mean", y = "Frequency")

1



0

250

500

750

1000

11.25 11.50 11.75
Sample Mean

F
re

qu
en

cy

The bound on the error of estimation is 0.22 cm. What proportion of the estimates from our simulation are
within 0.22 cm of µ?
mean(abs(ybar - 11.5) < 0.22)

[1] 0.9289
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Here is the distribution of the absolute error of estimation — i.e., |ȳ − µ| from the simulation.
ggplot(data.frame(ybar), aes(x = abs(ybar - 11.5))) + theme_minimal() +

geom_histogram(color = "black", fill = grey(0.8), boundary = 0) +
labs(x = "Absolute Error", y = "Frequency")
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This distribution has a mean of approximately
mean(abs(ybar - 11.55))

[1] 0.087728

and a 95th percentile of approximately
quantile(abs(ybar - 11.55), 0.95)

95%
0.218

Theory tells us that the expected absolute error is about

0.798
√

V (ȳ) = 0.798 × 0.11 ≈ 0.089,

and the 95th percentile (i.e., the bound on the error of estimation) is

2
√

V (ȳ) = 2 × 0.11 ≈ 0.22.

Not too bad!

Note: If you have never used R before and you’d like to try it, you can install R by downloading it from
r-project.org. I highly recommend that you use RStudio as your graphical user interface (GUI) to R. You can
download it from rstudio.com. You will need to install the packages I used here. You can do that in R with
the command: install.packages(c("SDaA","ggplot2")).

Categorical Target Variables
In some cases the target variable is categorical. What can accommodate such variables through the use of
indicator variables. We define yi as

yi =
{

1, if the i-th element is in a category of interest,
0, otherwise.
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Note that

τ =
N∑

i=1
yi = the number of elements in population that are in the category,

and

µ = 1
N

N∑
i=1

yi = the proportion of elements in population that are in the category.

A useful result is that it can be shown that σ2 is a simple function of µ when yi is an indicator variable
because

σ2 = 1
N − 1

N∑
i=1

(yi − µ)2 = N

N − 1µ(1 − µ).

In the sample it can be shown that ȳ is the proportion of elements in the sample that are in the category of
interest, and

s2 = n

n − 1 ȳ(1 − ȳ).

To emphasize that µ and ȳ are proportions they are sometimes written as p and p̂, respectively.

Example: Suppose we wanted to estimate the number and proportion of students at a university of 20000
students that own an Android mobile phone. To do this we use a simple random sampling design with a
sample size of 100 students. In that sample 40 students report having an Android phone. What are our
estimates of the number and proportion of the students at the university that own an Android phone, and
what is the bound on the error of estimation for each estimator?
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Domain Estimators
In survey sampling a domain is simply a subset of the population (i.e., a sub-population) of interest. Suppose
we want to estimate the total (τd) or mean (µd) for a particular domain when using simple random sampling.
Let Nd be the number of the N elements in the population are in the domain, and let nd be the number
of elements in the sample of n elements that are in the domain. Also let ȳd be the mean for just those nd

elements in the sample that are also in the domain. An estimator of µd is then simply ȳd. But the choice of
estimator of τd depends on if whether or not we know Nd.

1. If Nd is known then we can use
τ̂d = Ndȳd.

2. If Nd is unknown we cannot use τ̂d = Ndȳd. But we can use

τ̂d = N

n

∑
i∈S

y′
i,

where y′
i is defined as

y′
i =

{
yi, if the i-th element is in the domain,

0, otherwise.

We can also write this estimator as
τ̂d = N

n
ndȳd

because ȳd = 1
nd

∑
i∈S y′

i. The term N
n nd is effectively an estimator of Nd (we will see why later when

we talk about ratio estimators).

Example: Consider again the university of 20000 students and suppose we define our domain as those
students that own an Android phone. Again, using a simple random sampling design we select a sample of
100 students. Now suppose we want to estimate the total amount of money students in the domain spend on
phone apps per year. In the sample of 100 students 40 of the students own Android phones, and we find that
the mean amount of money those students spend on apps per year is 20 dollars.

1. What is our estimate of τd if we know that Nd = 8600?

2. What is our estimate of τd if we do not know Nd?
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How do these two estimators compare with respect to their sampling distributions? We could try to derive
the standard errors and thus the bound on the error of estimation for each estimator, but instead consider a
simulation study. Suppose we have a population of N = 5000 elements, of which Nd = 1000 elements are in
a domain of interest. The total for the domain of interest is τd = 75011. We can simulate a simple random
sampling design with a sample size of n = 100 and estimates from two estimators of τd:

τ̂d = Ndȳd and τ̂d = N

n
ndȳd.

The figure below shows the empirical distribution of the estimates from each estimator.
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So, we have two estimators of τd when using simple random sampling? What are their advantages and
disadvantages relative to each other? That is, why might we use one estimator over the other?
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