
Monday, Aug 26

Sampling With Replacement
A variation on simple random sampling is a design where we sample with replacement where every possible
sample of n elements has the same probability of being selected, but where the elements need not be distinct.

Example: Suppose we have N = 4 and n = 2 as in previous example. The sampling design for a simple
random sampling design when sampling without replacement is shown below.

Sample Probability
E1, E2 1/6
E1, E3 1/6
E1, E4 1/6
E2, E3 1/6
E2, E4 1/6
E3, E4 1/6

But if we sample with replacement then the sampling design is as shown below.

Sample Probability
E1, E1 1/16
E1, E2 1/16
E1, E3 1/16
E1, E4 1/16
E2, E1 1/16
E2, E2 1/16
E2, E3 1/16
E2, E4 1/16
E3, E1 1/16
E3, E2 1/16
E3, E3 1/16
E3, E4 1/16
E4, E1 1/16
E4, E2 1/16
E4, E3 1/16
E4, E4 1/16

Sampling with replacement changes the properties of the design as well as the sampling distributions of ȳ and
τ̂ .

1. The number of possible samples is Nn, which is larger than the number of possible samples when
sampling without replacement unless n = 1. For example, with a population of N = 4 elements and a
sample size of n = 2, the number of possible samples is 16 when sampling with replacement as opposed
to 6 when sampling without replacement.

2. The inclusion probabilities when sampling with replacement are πi = 1 − (1 − 1/N)n as opposed to
πi = n/N when sampling without replacement. We will discuss why and how this might be used later
in the course.
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3. The variance of ȳ and τ̂ do not include the finite population correction term so the formulas become

V(ȳ) = σ2

n
and V(τ̂) = N2 σ2

n
.

So how do the variances of ȳ and τ̂ when sampling with replacement compare to that when sampling
without replacement?

Central Limit Theorem
What can we say about the shape of the sampling distribution of ȳ or τ̂? The central limit theorem for
simple random sampling states that as n, N , and N − n increase, and assuming some other rather technical
but usually applicable conditions, the sampling distribution of ȳ “approaches” a normal distribution. This
implies the same behavior for the sampling distribution of τ̂ .

Example: Consider simple random sampling design with a population of N = 50 elements and a sample size
of n = 5. The values of the target variable in the population were selected randomly from the integers from 0
to 100, but the values were “shifted” so that µ = 50. The figure below shows the exact discrete sampling
distribution of ȳ.
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Interpreting a Normal Sampling Distribution
Let θ denote a parameter (e.g., µ or τ) and let θ̂ denote an estimator (e.g., ȳ or τ̂). Assume that the sampling
distribution of θ̂ is (approximately) normal in shape (by the central limit theorem) with a mean of θ (i.e., the
estimator is unbiased) and a variance of V(θ̂). What do we know about this sampling distribution?

1. There is a simple relationship between the mode and inflection points of the probability distribution
function and the mean and variance of θ̂.

inflection
 point

θ − V(θ̂)
θ

θ + V(θ̂)

θ̂

2. The distribution of the distance between θ̂ and θ — i.e., |θ̂ − θ| — is a half-normal distribution with a
mean of approximately 0.798

√
V(θ̂) and a median of approximately 0.674

√
V(θ̂).1 These two points

are denoted as a and b in the figure below.

1The mean is
√

2V(θ̂)/π and the median is
√

2V(θ̂)erf−1(0.5) where erf−1 is the inverse of the error function.
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inflection
 point

0 b a
V(θ̂)

|θ̂ − θ|

3. The 95th percentile of the distance between θ̂ and θ is approximately 2
√

V(θ̂).2

0
2 V(θ̂)

|θ̂ − θ|
This implies that there is approximately a 95% chance that a survey will result in an estimate θ̂ that is within

2The actual percentile is closer to 1.96
√

V(θ̂). This can be computed as
√

2V(θ̂)erf−1(p/100) where p is the desired percentile
(e.g., p = 95 for the 95th percentile or p = 50 for the 50th percentile and median). Note that any percentile can be computed
this way. In survey sampling it is customary to use 2

√
V(θ̂) rather than 1.96

√
V(θ̂) for simplicity.
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about 2
√

V(θ̂) of the parameter θ.

θ − 2 V(θ̂)
θ

θ + 2 V(θ̂)

θ̂

Example: Considered the earlier example with a population of N = 50 elements and a simple random
sampling design of n = 5 elements. The mean and variance for the population are µ = 50 and σ2 ≈ 900,
respectively. What can we conclude about the sampling distribution of ȳ?
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The Standard Error and the Bound on the Error of Estimation

The term
√

V(θ̂) is the standard error of θ̂. It is simply the standard deviation of θ̂. Under simple random
sampling the standard errors of ȳ and τ̂ are simply

SE(ȳ) =
√

V(ȳ) =
√(

1 − n

N

) σ2

n
and SE(τ̂) =

√
V(τ̂) =

√
N2

(
1 − n

N

) σ2

n
,

respectively. Note that as shown in the previous section many quantities of interest concerning the “accuracy”
of an estimator are proportional to the standard error.

The term 2
√

V(θ̂) is called the bound on the error of estimation (also sometimes the margin of error).
It can be viewed as an kind of upper bound on the distance between θ̂ and θ in the sense that there is about
a 95% chance that a survey will not exceed this error. That is

P

(
θ − 2

√
V(θ̂) < θ̂ < θ + 2

√
V(θ̂)

)
≈ 0.95.

Under simple random sampling the bounds on the error of estimation for ȳ and τ̂ are

2
√(

1 − n

N

) σ2

n
and 2

√
N2

(
1 − n

N

) σ2

n
,

respectively. It is important to note that this result requires that the sampling distribution is normal. In
practice it only is true approximately.3

Confidence Intervals
The bound on the error of estimation can be used to construct a confidence interval which is an “interval
estimate” of a parameter (as opposed to a “point estimate”) that has a known probability of being correct.
This is because

P

(
θ − 2

√
V(θ̂) < θ̂ < θ + 2

√
V(θ̂)

)
≈ 0.95

implies that

P

(
θ̂ − 2

√
V(θ̂) < θ < θ̂ + 2

√
V(θ̂)

)
≈ 0.95.

The confidence interval can be written as

θ̂ ± 2
√

V(θ̂) ⇔
(

θ̂ − 2
√

V(θ̂), θ̂ + 2
√

V(θ̂)
)

.

The probability of 95% is the confidence level of the confidence interval. It represents the expected percent
of confidence intervals that would correctly estimate the parameter, and the probability that a survey will
produce an estimate with an error less than the bound on the error of estimation.

3A more general statement can be made that is true for any type of sampling distribution for an unbiased estimator. There is
a result called Chebyshev’s inequality that implies that

P

(
θ − k

√
V (θ̂) < θ̂ < θ + k

√
V (θ̂)

)
>

1
k2

for any k > 0. That is, the probability that θ̂ is within k standard errors of θ is at least 1/k2. If we let k = δ/
√

V (θ̂) then we
can say that

P (θ − δ < θ̂ < θ + δ) >
V (θ̂)

δ2 .

Thus the lower bound on the probability that θ̂ is within δ of θ is proportion to V (θ̂). So regardless of the shape of the sampling
distribution the variability of the sampling distribution plays an important role in how close θ̂ might be to θ.
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θ − 2 V(θ̂)
θ

θ + 2 V(θ̂)

θ̂

θ − 2 V(θ̂)
θ

θ + 2 V(θ̂)

Example: Consider the previous example. If we obtain a sample and compute sample mean of ȳ = 71.64,
what is the confidence interval for estimating µ? What is the confidence interval for estimating τ?
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Variance Estimation
We do not typically know σ2 (i.e., the variance of the target variable for the population), although we might
use an educated guess if necessary (more on that later). But we can estimate it after a survey has been
conducted, and use that to estimate the variance of an estimator. An unbiased estimator is the sample
variance

s2 = 1
n − 1

∑
i∈S

(yi − ȳ)2.

Then the estimators of the variance of ȳ and τ̂ are

V̂(ȳ) =
(

1 − n

N

) s2

n
and V̂(τ̂) = N2

(
1 − n

N

) s2

n
.

The problem of estimating the variance of an estimator is called variance estimation in survey sampling.

Example: The sample from the previous example yields a sample variance of s2 = 616.7. The sample is
78.84, 29.84, 90.84, 88.84, and 69.84. How would we use this to compute (a) the bound on the error of
estimation for estimating µ with ȳ and (b) a confidence interval for estimating µ?
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