Monday, Apr 17

Genetic Linkage (Bateson, Saunders, and Punnett)

Genetic linkage is the tendency for DNA sequences that are close on a chromosome to be inherited together. An early demonstration of linkage used two traits of sweat peas: flower color (purple or red) and pollen grain shape (long or round). If there is *no linkage* then the probabilities of each combination of traits are as shown in the table below.

		Count		
Traits	Probability	observed	expected	
Purple and Long	9/16	284		
Purple and Round	3/16	21		
Red and Long	3/16	21		
Red and Round	1/16	55		

How would we conduct a goodness-of-fit test for no linkage?

Tests of Independence

Two categorical variables are said to be **independent** if the distribution of one variable does not depend on the value of the other variable.

Example: Consider the following data where a sample of 1398 children were classified with respect to tonsil size and carrier status of *Streptococcus pyogenes*.¹

	Ca	rrier	
Size	yes	no	Total
small	19	497	516
\mathbf{medium}	29	560	589
large	24	269	293
Total	72	1326	1398

These are the *observed* counts. The table below shows the estimated *expected* counts under the assumption that tonsil size and carrier status are *independent*. How are they computed?

	Ca	Carrier		
Size	yes	no	Total	
small	26.58	489.42	516	
\mathbf{medium}	30.33	558.67	589	
large	15.09	277.91	293	
Total	72	1326	1398	

¹Holmes, M. C. & Willaims, R. E. O. (1954). The distribution of carriers of Streptococcus pyogenes among 2413 healthy children. *Journal of Hygiene*, 52, 165–179.

Steps of a Test of Independence

- 1. State hypotheses in terms of independence of the variables.
- 2. Check assumptions (all expected counts should be at least five).
- 3. Compute the X^2 test statistic. Estimate the expected counts using the formula

$$\frac{R \times C}{T}$$

where R and C are the sum of the observed counts in the corresponding row and column, respectively, and T is the total of all the observed counts.

- 4. Compute the *p*-value using (r-1)(c-1) as the degrees of freedom, where *r* and *c* are the number of rows and columns of observed counts in the table, respectively.
- 5. Make a decision/conclusion.

The Two-Sample Test of Proportions

Recall the study of the influence of applicant's sex on personnel decisions.²

	Promotion		
Applicant	yes	no	Total
male	21	3	24
female	14	10	24
Total	35	13	48

We could investigate the relationship between applicant sex and promotion decision by a test of the hypotheses $H_0: p_m - p_f = 0$ versus $H_a: p_m - p_f \neq 0$ using the test statistic

$$z = \frac{\hat{p}_m - \hat{p}_f}{\sqrt{\hat{p}(1-\hat{p})(1/n_m + 1/n_f)}},$$

which yields a test statistic of $z \approx 2.27$ and a p-value of about 0.02. How is this test related to the test of independence using the X^2 test statistic? How is the z test statistic limited?

²Rosen, B. & Jerdee, J. (1974). Influence of sex role stereotypes on personnel decisions. *Journal of Applied Psychology*, 59, 9–14.

Comparison of Chemotherapy Treatment Strategies

	Tumor Response				
Strategy	progressive disease	no change	partial remission	complete remission	Total
sequential	32	57	34	28	151
alternating	53	51	23	21	148
Total	85	108	57	49	299

Consider the following data from a randomized experiment comparing two strategies for chemotherapy. 3

³Holtbrugge, W. & Schumacher, M. (1991). A comparison of regression models for the analysis of ordered categorical data. *Applied Statistics*, 40, 249–259.