Monday, Mar 6

Statistical Significance

A statistically significant result is one that is decidedly not due to "ordinary variation" in the data (i.e., not due to chance or not a coincidence). Statistical tests (aka *significance tests* or *statistical hypothesis tests* or *hypothesis tests*) are how we decide whether or not an observed result is statistically significant.

Is a Coin Fair?

Suppose we flip a coin n times. We can consider the observation of each flip to be a random variable with the following distribution.

$$\begin{array}{c|cc}
x & P(x) \\
\hline Heads & p \\
Tails & 1-p
\end{array}$$

The value of p implies something about the coin.

- 1. If p = 0.5 the coin is fair.
- 2. If $p \neq 0.5$ the coin is not fair.

Assume we do not know the value of p. We flip the coin 30 times to produce a sample of n = 30 observations. It comes up heads 20 times, so $\hat{p} = 20/30 = 2/3 \approx 0.67$. What might we decide about p?

- 1. Conclude that p = 0.5. The result that $\hat{p} = 2/3$ is not statistically significant.
- 2. Conclude that $p \neq 0.5$. The result that $\hat{p} = 2/3$ is statistically significant.

How do we decide?

Can Milena Read?

Suppose Milena plays n games of Pounce. We can consider the observation of her response to a single game to be a random variable with the following distribution.

x	P(x)
Correct	p
Incorrect	1-p

The value of p implies something about Milena's reading ability.

- 1. Milena cannot read. She is guessing so p = 1/3.
- 2. Milena can read (somewhat) so p > 1/3.

We do not know the value of p. Milena played Pounce 50 times to produce a sample of n = 50 observations. She selected the correct word 25 times, so $\hat{p} = 25/50 = 0.5$. What would we decide about p?

- 1. Conclude that p = 1/3. The result that $\hat{p} = 0.5$ is not statistically significant.
- 2. Conclude that p > 1/3. The result that $\hat{p} = 0.5$ is statistically significant.

What do we decide?

The Sampling Distribution of \hat{p}

What do we know about the sampling distribution of \hat{p} ?

- 1. The mean of \hat{p} is p.
- 2. The standard deviation (i.e., standard error) of \hat{p} is

$$\sqrt{\frac{p(1-p)}{n}}.$$

3. The shape of the sampling distribution is approximately that of a normal distribution.

This is the sampling distribution of \hat{p} .

It is convenient to convert \hat{p} into a z-score using the formula

$$z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}}.$$

This is the sampling distribution of z.

But we do not know the value of p!

Null and Alternative Hypotheses

Null Hypothesis (H_0) : Usually the hypothesis of "no effect" (e.g., nothing is "happening"). In practice the null hypothesis is often that the parameter equals a *specific value* (although we will consider the case when it may be a range of values when we discuss *composite* null hypotheses).

Alternative Hypothesis (H_a) : Usually the hypothesis of an "effect" (e.g., something is "happening"). In practice the alternative hypothesis is usually that the parameter is in a *range of values*.

What would the null and alternative hypotheses be for the examples above?

Test Statistics

A test statistic measures the discrepancy between the point estimate of the parameter and the hypothesized value of the parameter. A test statistic is computed *under the assumption that the null hypothesis is true*.

Example: The *z*-score

$$z = \frac{\hat{p} - p}{\sqrt{p(1 - p)/n}}$$

is a test statistic. What would be the value of the test statistic for the examples above?

Decision Making

Modus Tollens: If A then B. Not B. Therefore not A.

Example: If someone is a Hobbit (A), then their feet will be hairy (B). Your feet are not hairy (not B). Therefore you are not a Hobbit (not A).

Example: If it rains today (A), then the ground will be wet (B). The ground is not wet (not B). Therefore it did not rain today (not A).

"Probabilistic" Modus Tollens: If H_0 is true (A), then the test statistic is likely to be a "typical" value (B). The test statistics is not a "typical" value (not B). Therefore H_0 is decidedly false (not A).

Example: If H_0 is true (A), then it is likely that -1.96 < z < 1.96 (B). So if z > 1.96 or z < -1.96 (not B), then we decide that H_0 is not true (not A).

What can we decide?

- 1. The test statistic is a "typical" value when H_0 is true. Do not reject H_0 . The result is not statistically significant.
- 2. The test statistic is not a "typical" value when H_0 is true. Reject H_0 . The result is statistically significant.

Note: This is not a true modus tollens argument. This argument can lead us to the wrong conclusion because it is still possible to observe an atypical value of the test statistic even if H_0 is true.

Example: What might we decide for the previous examples?

More Platies!

Do female platies have a preference for a yellow-tailed male?

In 67 out of 84 observations, the female platy spent a majority of her time with the yellow-tailed male. Is this statistically significant?