Friday, Feb 3

Deriving a Sampling Distribution (the "Five-Step Method")

We can derive the probability distribution of a statistic (i.e., a *sampling distribution*) given the probability distribution of a single observation (i.e., a *population distribution*) by using the following steps.

- 1. Create the sample space which consists of all possible samples.
- 2. Compute the probability of each sample in the sample space.
- 3. Compute the value of the statistic for each sample in the sample space.
- 4. Create a table of the possible values of the statistic.
- 5. Compute the probability of each value of the statistic.

A sample space is the set of all possible samples of observations.

Sampling Distribution of a Mean

Example: Suppose we have a forest of trees of which 60% have a volume of 20 cubic feet, and 40% have a volume of 30 cubic feet. What would be the sampling distribution of the mean volume based on a random sample of the n = 2 trees? (Note: We are going to assume for now that we are *sampling with replacement*, meaning that we could select the same tree more than once.)

 Table 1: Population Distribution

x	P(x)
$\begin{array}{c} 20\\ 30 \end{array}$	$\begin{array}{c} 0.6 \\ 0.4 \end{array}$

Table 2: Sample Space

Sample	Probability	\bar{x}
20, 20	$0.6 \times 0.6 = 0.36$	20
20, 30	$0.6 \times 0.4 = 0.24$	25
30, 20	$0.4 \times 0.6 = 0.24$	25
30, 30	$0.4 \times 0.4 = 0.16$	30

Table 3: Sampling Distribution

\bar{x}	P(x)
20	0.36
25	0.24 + 0.24 = 0.48
30	0.16

Note: We are using two properties of probabilities from probability theory here.

- 1. The probability of two or more events happening together (e.g., A and B) equals the *product* of their probabilities *if* the events are *independent*, meaning that the probability of each event does not change depending on if the other events have or have not occurred.
- 2. The probability that at least one of two or more events happening (e.g., A or B) equals the sum of their probabilities if the events are mutually exclusive, meaning that the events cannot both occur at the same time.

Example: What is the sampling distribution of the mean of a sample of n = 2 observations of the throwing distance of the trebuchet?

 Table 4: Population Distribution

_	
x	P(x)
1	0.1
2	0.3
3	0.6

Table 5: Sample Space

Sample	Probability	\bar{x}
1, 1	0.01	1.0
1, 2	0.03	1.5
1, 3	0.06	2.0
2, 1	0.03	1.5
2, 2	0.09	2.0
2, 3	0.18	2.5
3, 1	0.06	2.0
3, 2	0.18	2.5
3, 3	0.36	3.0

 Table 6: Sampling Distribution

\bar{x}	$P(\bar{x})$
1.0	0.01
1.5	0.06
2.0	0.21
2.5	0.36
3.0	0.36

Example: We can find the sampling distribution of any statistic in the same way. What is the sampling distribution of the sample variance (s^2) based on a sample of n = 2 observations?

Sampling Distribution of a Proportion

Example: What is the sampling distribution of the *proportion* of female platies preferring the yellow-tailed male from a sample of n = 3 observations?

\overline{x}	P(x)
С	0.3
Υ	0.7

Table 7: Population Distribution

Note: We will denote a proportion from a sample as \hat{p} .

The Binomial Distribution

Assume that each observation has a probability distribution with two possible values — a "success" (S) and a "failure" (F). Assume the probability of a success is p and the probability of a failure is thus 1 - p. Finally assume that the observations are *independent* meaning that the probabilities of a success or failure of any one observation does not depend on the other observations.

$$\begin{array}{c|cc} x & P(x) \\ \hline S & p \\ F & 1-p \end{array}$$

Example: Assume the following distribution of one observation for the platy preference.

$$\begin{array}{ccc} x & P(x) \\ Y & 0.7 \\ C & 0.3 \end{array}$$

Here we are defining Y as a success and C as a failure, so p = 0.7 and 1 - p = 0.3.

The sampling distribution of the number of successes (s) in a sample will be a binomial distribution. The sampling distribution of s is given by the following equation.¹

$$P(s) = \frac{n!}{s!(n-s)!} p^s (1-p)^{n-s}$$

Two mathematical details to remember when using this formula:

1. The ! symbol is the *factorial operation*. For example,

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120,$$

$$4! = 4 \times 3 \times 2 \times 1 = 24,$$

$$3! = 3 \times 2 \times 1 = 6,$$

$$2! = 2 \times 1 = 2,$$

$$1! = 1,$$

$$0! = 1.$$

Note that 0! = 1, which is perhaps not intuitive.

2. For powers remember that any number raised to the power of 1 is that number (i.e., $p^1 = p$ and $(1-p)^1 = 1-p$), and any number raised to the power of zero is one (i.e., $p^0 = 1$ and $(1-p)^0 = 1$).

$$P(s) = \binom{n}{s} p^s (1-p)^{n-s},$$

because $\binom{n}{s} = \frac{n!}{s!(n-s)!}$. The $\binom{n}{s}$ is called the *binomial coefficient*. Also usually this formula is written with x in place of s, but I have used s to emphasize that the formula computes the probability of the number of *successes*.

¹Sometimes we write this as

Sampling Distribution of a Proportion Revisited

Example: What is the sampling distribution of the *proportion* of female platies preferring the yellow-tailed male from a sample of n = 3 observations?

Table 8:	Population	Distribution
----------	------------	--------------

x	P(x)
С	0.3
Υ	0.7

Table 9: Sampling Distribution

s	\hat{p}	$P(\hat{p})$
0	0	0.027
1	1/3	0.189
2	2/3	0.441
3	1	0.343

Note: We will denote a proportion from a sample as \hat{p} .

Here is how we can compute the probabilities in the sampling distribution of \hat{p} .

$$P(0) = \underbrace{\frac{3!}{0!(3-0)!}}_{1} \underbrace{0.7^{0}(1-0.7)^{3-0}}_{0.027} = 1 \times 0.027 = 0.027$$

$$P(1) = \underbrace{\frac{3!}{1!(3-1)!}}_{3} \underbrace{0.7^{1}(1-0.7)^{3-1}}_{0.063} = 3 \times 0.063 = 0.189$$

$$P(2) = \underbrace{\frac{3!}{2!(3-2)!}}_{3} \underbrace{0.7^{2}(1-0.7)^{3-2}}_{0.147} = 3 \times 0.147 = 0.441$$

$$P(3) = \underbrace{\frac{3!}{3!(3-3)!}}_{1} \underbrace{0.7^{3}(1-0.7)^{3-3}}_{0.343} = 1 \times 0.343 = 0.343$$

Note that the formula computes two parts — the number of samples that produce s successes out of n observations, and the probability of each sample. These can be seen when we look at the sample space.

Table 10: Sample Space

Sample	Probability		\hat{p}
Y, Y, Y	$0.7 \times 0.7 \times 0.7 = 0.343$	3	1
C, Y, Y	$0.3 \times 0.7 \times 0.7 = 0.147$	2	2/3
Y, C, Y	$0.7 \times 0.3 \times 0.7 = 0.147$	2	2/3
Y, Y, C	$0.7 \times 0.7 \times 0.3 = 0.147$	2	2/3
Y, C, C	$0.7 \times 0.3 \times 0.3 = 0.063$	1	1/3
C, Y, C	$0.3 \times 0.7 \times 0.3 = 0.063$	1	1/3
C, C, Y	$0.3 \times 0.3 \times 0.7 = 0.063$	1	1/3
C, C, C	$0.3 \times 0.3 \times 0.3 = 0.027$	0	0