Friday, Feb 3

Deriving a Sampling Distribution (the "Five-Step Method")

We can derive the probability distribution of a statistic (i.e., a *sampling distribution*) given the probability distribution of a single observation (i.e., a *population distribution*) by using the following steps.

- 1. Create the sample space which consists of all possible samples.
- 2. Compute the probability of each sample in the sample space.
- 3. Compute the value of the statistic for each sample in the sample space.
- 4. Create a table of the possible values of the statistic.
- 5. Compute the probability of each value of the statistic.

A **sample space** is the set of all possible samples of observations.

Sampling Distribution of a Mean

Example: Suppose we have a forest of trees of which 60% have a volume of 20 cubic feet, and 40% have a volume of 30 cubic feet. What would be the sampling distribution of the mean volume based on a random sample of the *n* = 2 trees? (Note: We are going to assume for now that we are *sampling with replacement*, meaning that we could select the same tree more than once.)

Table 1: Population Distribution

x	P(x)
20	0.6
30	0.4

Table 2: Sample Space

Sample	Probability	\mathcal{X}
20, 20	$0.6 \times 0.6 = 0.36$	20
20, 30	$0.6 \times 0.4 = 0.24$	25
30, 20	$0.4 \times 0.6 = 0.24$	25
30, 30	$0.4 \times 0.4 = 0.16$	30

Table 3: Sampling Distribution

Note: We are using two properties of probabilities from probability theory here.

- 1. The probability of two or more events happening together (e.g., A *and* B) equals the *product* of their probabilities *if* the events are *independent*, meaning that the probability of each event does not change depending on if the other events have or have not occurred.
- 2. The probability that at least one of two or more events happening (e.g., A *or* B) equals the *sum* of their probabilities *if* the events are *mutually exclusive*, meaning that the events cannot both occur at the same time.

Example: What is the sampling distribution of the mean of a sample of $n = 2$ observations of the throwing distance of the trebuchet?

Table 4: Population Distribution

x	P(x)
ı	0.1
2	0.3
3	0.6

Table 5: Sample Space

Probability	\bar{x}
0.01	1.0
0.03	$1.5\,$
0.06	2.0
0.03	$1.5\,$
0.09	2.0
0.18	2.5
0.06	2.0
0.18	2.5
0.36	$3.0\,$

Table 6: Sampling Distribution

Example: We can find the sampling distribution of any statistic in the same way. What is the sampling distribution of the sample variance (s^2) based on a sample of $n = 2$ observations?

Sampling Distribution of a Proportion

Example: What is the sampling distribution of the *proportion* of female platies preferring the yellow-tailed male from a sample of $n=3$ observations?

Note: We will denote a proportion from a sample as \hat{p} .

The Binomial Distribution

Assume that each observation has a probability distribution with two possible values — a "success" (*S*) and a "failure" (F) . Assume the probability of a success is p and the probability of a failure is thus $1 - p$. Finally assume that the observations are *independent* meaning that the probabilities of a success or failure of any one observation does not depend on the other observations.

$$
\begin{array}{c|cc}\n x & P(x) \\
\hline\n S & p \\
F & 1-p\n\end{array}
$$

Example: Assume the following distribution of one observation for the platy preference.

$$
\begin{array}{cc}\nx & P(x) \\
\hline\nY & 0.7 \\
C & 0.3\n\end{array}
$$

Here we are defining *Y* as a success and *C* as a failure, so $p = 0.7$ and $1 - p = 0.3$.

The *sampling distribution* of the *number of successes* (*s*) in a sample will be a *binomial distribution*. The sampling distribution of s is given by the following equation.^{[1](#page-5-0)}

$$
P(s) = \frac{n!}{s!(n-s)!}p^s(1-p)^{n-s}
$$

.

Two mathematical details to remember when using this formula:

1. The ! symbol is the *factorial operation*. For example,

5! =
$$
5 \times 4 \times 3 \times 2 \times 1 = 120
$$
,
\n4! = $4 \times 3 \times 2 \times 1 = 24$,
\n3! = $3 \times 2 \times 1 = 6$,
\n2! = $2 \times 1 = 2$,
\n1! = 1,
\n0! = 1.

Note that $0! = 1$, which is perhaps not intuitive.

2. For powers remember that any number raised to the power of 1 is that number (i.e., $p^1 = p$ and $(1-p)^1 = 1-p$, and any number raised to the power of zero is one (i.e., $p^0 = 1$ and $(1-p)^0 = 1$).

$$
P(s) = {n \choose s} p^{s} (1-p)^{n-s},
$$

because $\binom{n}{s} = \frac{n!}{s!(n-s)!}$. The $\binom{n}{s}$ is called the *binomial coefficient*. Also usually this formula is written with *x* in place of *s*, but I have used *s* to emphasize that the the formula computes the probability of the number of *successes*.

¹Sometimes we write this as

Sampling Distribution of a Proportion Revisited

Example: What is the sampling distribution of the *proportion* of female platies preferring the yellow-tailed male from a sample of $n = 3$ observations?

x	P(x)
(:	0.3
v	0.7

Table 9: Sampling Distribution

Note: We will denote a proportion from a sample as *p*ˆ.

Here is how we can compute the probabilities in the sampling distribution of \hat{p} .

$$
P(0) = \underbrace{\frac{3!}{0!(3-0)!}}_{1} \underbrace{0.7^{0}(1-0.7)^{3-0}}_{0.027} = 1 \times 0.027 = 0.027
$$
\n
$$
P(1) = \underbrace{\frac{3!}{1!(3-1)!}}_{3} \underbrace{0.7^{1}(1-0.7)^{3-1}}_{0.063} = 3 \times 0.063 = 0.189
$$
\n
$$
P(2) = \underbrace{\frac{3!}{2!(3-2)!}}_{3} \underbrace{0.7^{2}(1-0.7)^{3-2}}_{0.147} = 3 \times 0.147 = 0.441
$$
\n
$$
P(3) = \underbrace{\frac{3!}{3!(3-3)!}}_{1} \underbrace{0.7^{3}(1-0.7)^{3-3}}_{0.343} = 1 \times 0.343 = 0.343
$$

Note that the formula computes two parts — the number of samples that produce *s* successes out of *n* observations, and the probability of each sample. These can be seen when we look at the sample space.

Table 10: Sample Space

Sample	Probability	S	\hat{p}
Y, Y, Y	$0.7 \times 0.7 \times 0.7 = 0.343$	3	$\mathbf{1}$
C, Y, Y	$0.3 \times 0.7 \times 0.7 = 0.147$	$\overline{2}$	2/3
Y, C, Y	$0.7 \times 0.3 \times 0.7 = 0.147$	2	2/3
Y, Y, C	$0.7 \times 0.7 \times 0.3 = 0.147$	\mathcal{D}	2/3
Y, C, C	$0.7 \times 0.3 \times 0.3 = 0.063$	1	1/3
C, Y, C	$0.3 \times 0.7 \times 0.3 = 0.063$	1	1/3
C, C, Y	$0.3\,\times\,0.3\,\times\,0.7\,=\,0.063$	1	1/3
C, C, C	$0.3 \times 0.3 \times 0.3 = 0.027$	0	Ω