Monday, Jan 30

Probability and Relative Frequency

Probability is a measurement of the "likelihood" of an event as a number between 0 and 1. These measurements follow the mathematical rules of *probability theory*.

How can we connect probabilities with empirical observations? The *Law of Large Numbers* states that a *relative frequency* will tend to "approach" (in some sense) the *probability* of an event as the number of observations increases.

Example: Consider rolling a 4-sided die many times and looking at the distribution of the sides.

In a *survey* the relative frequencies for the distribution of the *population* of observations become probabilities if we select units *at random*.

Example: Consider a survey of tree volume.

Distribution of Population of Observations

In an *experiment* the probabilities are determined by the underlying process that produces the observations. **Example**: Suppose we are studying the distance that a toy trebuchet will throw a projectile. First consider observing the distance (*x*) of *one* throw.

Now consider observing the *mean* distance (i.e., \bar{x}) of a sample of $n = 3$ throws.

Now consider observing the *mean* distance (i.e., \bar{x}) of a sample of $n = 10$ throws.

Example: Suppose we are studying the "preference" of female platies for males with clear versus yellow tails. Consider observing (a) the apparent preference from one observation and (b) the *proportion* of observations out of $n = 3$ observations where the yellow-tailed male is preferred.

Random Variables and Probability Distributions

A **random variable** occurs when we assign values to an *event*. An *event* corresponds to a particular *outcome* of a random process. Distance, mean distance, preference, and proportion preferring yellow-tailed male are all *random variables* in the examples above. Random variables can be *quantitative* or *categorical*.

Types of *Quantitative* Random Variables:

- 1. **Discrete**. A random variable is *discrete* if the possible values are *countable*.
- 2. **Continuous**. A random variable is *continuous* if the possible values are *not countable*.

The **probability distribution** of a *discrete* random variable consists of (a) the *possible values* of the random variable and (b) their *probabilities*. The distribution can be shown using a plot (as shown earlier) or a table (as shown below).

Example: Here are the probability distributions of one observation of the distance a trebuchet throws (*x*), and the mean distance in a sample of $n = 3$ throws (\bar{x}) .

\boldsymbol{x}	P(x)
1	0.1
$\overline{2}$	0.3
3	0.6
\bar{x}	$P(\bar{x})$
1.00	0.001
1.33	0.009
1.67	0.045
2.00	0.135
2.33	0.270
2.67	0.324
3.00	${0.216}$

Example: Here are the probability distributions of one observation of female platy preference (*x*), and the proportion of observations out of $n = 3$ where the yellow-tailed male is preferred (\hat{p}) .

Two Important Probability Distributions in Statistical Inference

- 1. The probability distribution of a *single observation* (a **population distribution**).
- 2. The probability distribution of a *statistic* (a **sampling distribution**).

Mean of a Random Variable (Discrete Case)

The mean of a *discrete* random variable is

$$
\mu = \sum_x x P(x),
$$

where *x* denotes a value of the random variable and $P(x)$ denotes the probability of that value.^{[1](#page-3-0)} Note that the *x* below the summation sign here indicates that we sum over all values of *x*.

¹We can say that " μ is the mean of the probability distribution of the random variable" or, more simply, " μ is the mean of the random variable." Similarly we can say that "*σ* is the standard deviation of a probability distribution" or that "*σ* is the standard deviation of a random variable.

The Law of Large Numbers implies that as the number of observations of a random variable increases, their mean (\bar{x}) will tend to "approach" (in some sense) μ .

Example: Consider the probability distribution of an observation of a single throw of the trebuchet (a *population distribution*).

x	$P(x)$
1	0.1
2	0.3
3	0.6

We can confirm that the mean of the random variable x is $\mu = 2.5$ m.

Example: Consider the probability distribution of the proportion of female platies that prefer the yellow-tailed male from a sample $n = 3$ observations (a *sampling distribution*).

We can confirm that the mean of the random variable \hat{p} is $\mu = 0.7$.

Variance of a Random Variable (Discrete Case)

The *variance* of a *discrete* random variable is

$$
\sigma^2 = \sum_{x} (x - \mu)^2 P(x),
$$

and the standard deviation is

$$
\sigma = \sqrt{\sum_{x} (x - \mu)^2 P(x)}.
$$

Example: Consider the probability distribution of an observation of a single throw of the trebuchet (a *population distribution*).

Recall that the mean of the random variable x is $\mu = 2.5$ m. We can confirm that the standard deviation of *x* is $\sigma \approx 0.67$ m.

Example: Consider the probability distribution of the mean distance of a sample of $n = 3$ throws of the trebuchet (a *sampling distribution*).

\hat{x}	$P(\bar{x})$
1.00	0.001
1.33	0.009
1.67	0.045
2.00	0.135
2.33	0.270
2.67	0.324
3.00	0.216

The mean of \bar{x} is $\mu = 2.5$ m. We can confirm that the standard deviation of \bar{x} is $\sigma \approx 0.39$ m.