Friday, Jan 13

Distributions

The **distribution** of the observations of a variable gives (a) the values that occur and (b) how often each value occurs. The concept of a distribution is a useful way to characterize the observations in a sample or population.

Example: The following is a hypothetical set of observations of examination scores

8, 6, 8, 6, 5, 10, 7, 6, 7, 8

The "how often" is usually described using *frequency* (i.e., how often the value occurs) or *relative frequency* (i.e., the proportion of the observations assume that value). Later we will make use of *cumulative relative frequency* (i.e., the proportion of observations *equal to or less than that observation*).

Score	Frequency	Relative Frequency	Cumulative Relative Frequency
5	1	0.1	0.1
6	3	0.3	0.4
7	2	0.2	0.6
8	3	0.3	0.9
10	1	0.1	1.0

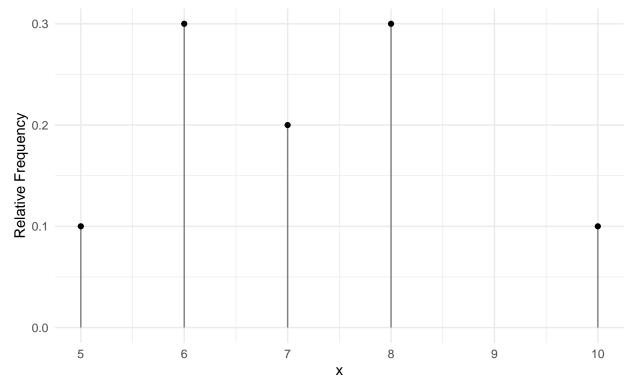
Example: Consider the following 200 observations of the number of deaths due to horse or mule kicks in Prussian army units between 1875 and 1894.¹

Deaths	Frequency	Relative Frequency	Cumulative Relative Frequency
0	109	0.545	0.545
1	65	0.325	0.870
2	22	0.110	0.980
3	3	0.015	0.995
4	1	0.005	1.000

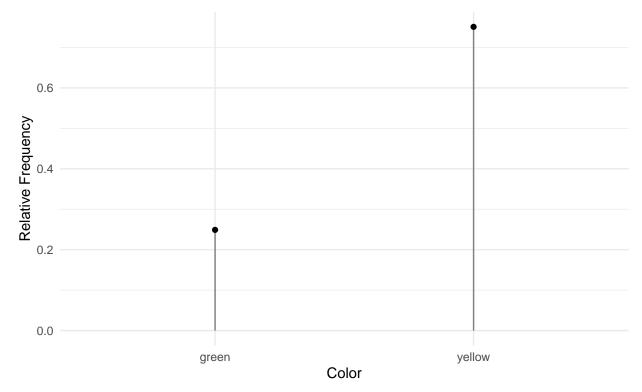
We can talk about the distribution of a *categorical* variable as well, although we may not use cumulative relative frequency if there is no natural order to the variable values.

Example: In one of Gregor Mendel's classic studies, he bred 8023 pea plants and observed the color of the pea pods.

¹Source: L. von Bortkiewicz (1898). Das Gesertz der kleinen Zhalen. Teubner, Leipzig.

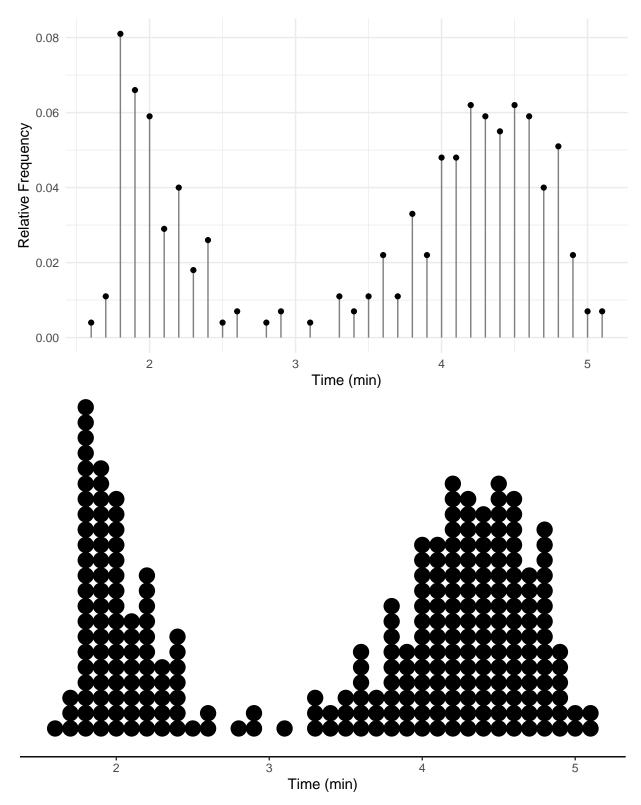

Color	Frequency	Relative Frequency
green yellow	$2001 \\ 6022$	$0.249 \\ 0.751$

Note: Relative frequency has been rounded to the third decimal place.

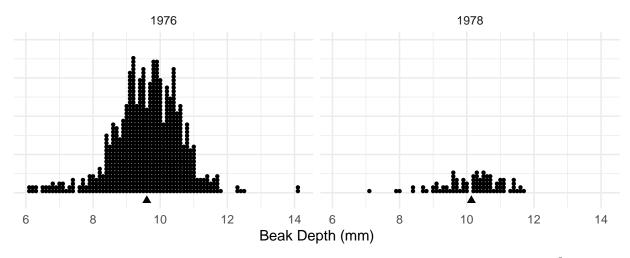

Graphical Depictions of Distributions

There are a variety of ways to graph a distribution.

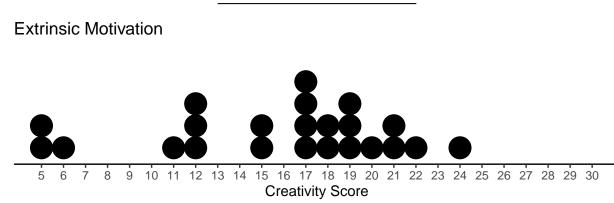
Example: Graphical depiction of the distribution of the variable in the first example above.


Example: Grapical depiction of the distribution of color from Mendel's pea plant study.

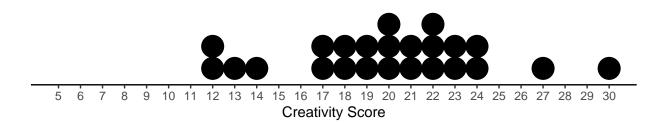
Another useful method is what is called a **dot plot**.


Example: Consider a sample of observations of eruption duration of Old Faithful.

Time	Frequency	Relative Frequency
1.6	1	0.004
1.7	3	0.011
1.8	22	0.081
1.9	18	0.066
2	16	0.059
÷	÷	:
5.1	2	0.007


Example: Dot plots of samples of observations of beak size for Finches on Daphne Major (Galapagos Islands) from before (1976) and after (1978) a drought in $1977.^2$

²Grant, P. (1986). Ecology and evolution of Darwin's finches. Princeton, N.J.: Princeton University Press.

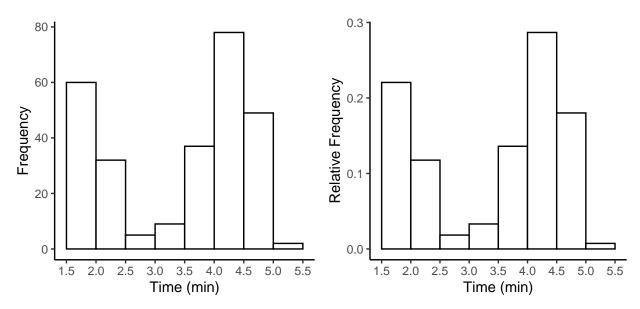


Example: Creative writing students were "primed" with either extrinsic or intrinsic motivation.³ They were then asked to write a poem in the Haiku style about laughter. Each poem was then scored for "creativity" on a 40-point scale by judges.

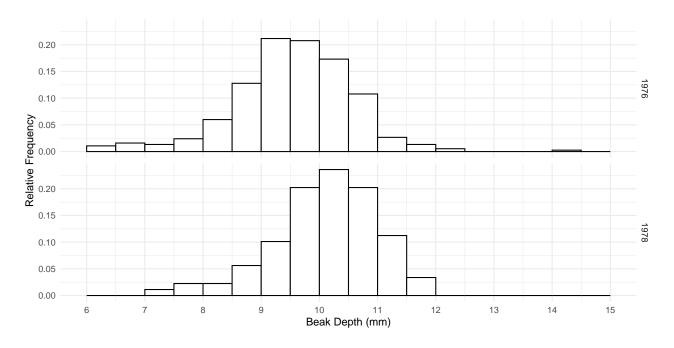
Treatment	Score	Frequency
Extrinsic	5	2
Extrinsic	6	1
Extrinsic	11 1	
:	:	:
Extrinsic	24	1
Treatment	Score	Frequency
Intrinsic	12	2
Intrinsic	13	1
Intrinsic	14	1
•	:	•
Intrinsic	30	1

³Amabile, T. (1985). Motivation and creativity: Effects of motivational orientation on creative writers. *Journal of Personality* and Social Psychology, 48(2), 393–399.

Histograms


A **histogram** is a specialized type of bar graph for showing the distribution of a *quantitative variable*. I have written a more detailed tutorial on how to create a histogram "by hand" with a manageable number of observations.

Example: Here are the "raw" data from the sample of observations of eruption time of Old Faithful, sorted in increasing order for convenience.


Time	Frequency	Relative Frequency
1.5 to 2	60	0.22
2 to 2.5	32	0.12
2.5 to 3	5	0.02
3 to 3.5	9	0.03
3.5 to 4	37	0.14
4 to 4.5	78	0.29
4.5 to 5	49	0.18
5 to 5.5	2	0.01

Note: The intervals used are a matter of choice. But they should all be of the same width (here 0.5 minutes). Also we need a convention for when an observation falls on the border between two intervals. In my histograms such observations are always put in the *lower* interval.

The histogram is then drawn with the horizontal position of the bars corresponding to the interval, and the height of the bars corresponding to frequency *or* relative frequency.

Example: Here are some histograms of the finch data.

Summary Measures of a Distribution

A couple of properties of a distribution that we often want to measure are *location* and *variability*. Such properties are statistics (if the distribution is of the observations in a sample) or parameters (if the distribution is of the observations in a population).

Measures of Location

The (arithmetic) mean is simply the average of the observations. This can be written as

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

An alternative formula based on frequencies or relative frequencies can be written as

$$\bar{x} = \frac{1}{n} \sum_{x} x f(x)$$
 or $\bar{x} = \sum_{x} x r(x)$

where the summation is over all *distinct* values of the variable, and f(x) is the *frequency* of the value of x, and r(x) is the *relative frequency* of the value x.

Example: Consider again the distribution of the number of deaths due to horse and mule kicks in Prussian army units.

Deaths	Frequency	Relative Frequency	$\begin{array}{l} {\rm Deaths} \times \\ {\rm Relative} \\ {\rm Frequency} \end{array}$
0	109	0.545	0
1	65	0.325	0.325
2	22	0.11	0.22
3	3	0.015	0.045
4	1	0.005	0.02
Total	200	1	0.61

The mean is $\bar{x} = 0.61$.

Note: The mean can be interpreted as the "balance point" of the distribution.

or

The **median** is defined as the "middle" value when the observations are sorted in increasing order, or the average of the two middle values if the number of observations is even.

Example: Consider the following 9 observations of a quantitative variable.

 $6, \, 6, \, 6, \, 7, \, 7, \, 8, \, 9, \, 9, \, 10$

Example: Consider the following 10 observations of a quantitative variable.

6, 6, 6, 7, 7, 8, 9, 9, 9, 10

The **mode** is the value with the largest (relative) frequency.

- 1. The mode can be used with *categorical* variables, but the median and mean cannot.
- 2. The mode may not be unique if there are two or more most frequent values.